liuyizhang
commited on
Commit
·
82b6069
1
Parent(s):
c2a6c29
support gradio & api
Browse files- api_client.py +69 -0
- app.py +197 -65
- requirements.txt +1 -5
api_client.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests, json
|
2 |
+
from PIL import Image
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
import base64
|
6 |
+
import io
|
7 |
+
|
8 |
+
def request_post(url, data, timeout=600, headers = None):
|
9 |
+
if headers is None:
|
10 |
+
headers = {
|
11 |
+
# 'content-type': 'application/json'
|
12 |
+
# 'Connection': 'keep-alive',
|
13 |
+
'Accept': '*/*', # 接受任何类型的返回数据
|
14 |
+
'Content-Type': 'application/json;charset=UTF-8', # 发送数据为json
|
15 |
+
# 'Content-Length': '156',
|
16 |
+
# 'Accept-Encoding': 'gzip, deflate',
|
17 |
+
# 'Accept-Language': 'zh-CN,zh;q=0.9',
|
18 |
+
# 'User-Agent': 'SamClub/5.0.45 (iPhone; iOS 15.4; Scale/3.00)',
|
19 |
+
# 'device-name': 'iPhone14,3',
|
20 |
+
# 'device-os-version': '15.4',
|
21 |
+
# 'device-type': 'ios',
|
22 |
+
# 'auth-token': authtoken,
|
23 |
+
# 'app-version': '5.0.45.1'
|
24 |
+
}
|
25 |
+
try:
|
26 |
+
response = requests.post(url=url, headers=headers, data=json.dumps(data), timeout=timeout)
|
27 |
+
response_data = response.json()
|
28 |
+
return response_data
|
29 |
+
except Exception as e:
|
30 |
+
print(f'request_post[Error]:' + str(e))
|
31 |
+
print(f'url: {url}')
|
32 |
+
print(f'data: {data}')
|
33 |
+
print(f'response: {response}')
|
34 |
+
return None
|
35 |
+
|
36 |
+
url = "http://127.0.0.1:7860/imgCLeaner"
|
37 |
+
|
38 |
+
def imgFile_to_base64(image_file):
|
39 |
+
with open(image_file, "rb") as f:
|
40 |
+
im_bytes = f.read()
|
41 |
+
im_b64_encode = base64.b64encode(im_bytes)
|
42 |
+
im_b64 = im_b64_encode.decode("utf8")
|
43 |
+
return im_b64
|
44 |
+
|
45 |
+
def base64_to_bytes(im_b64):
|
46 |
+
im_b64_encode = im_b64.encode("utf-8")
|
47 |
+
im_bytes = base64.b64decode(im_b64_encode)
|
48 |
+
return im_bytes
|
49 |
+
|
50 |
+
def base64_to_PILImage(im_b64):
|
51 |
+
im_bytes = base64_to_bytes(im_b64)
|
52 |
+
pil_img = Image.open(io.BytesIO(im_bytes))
|
53 |
+
return pil_img
|
54 |
+
|
55 |
+
image_file = 'dog.png'
|
56 |
+
data = {'remove_texts': "小狗 . 椅子",
|
57 |
+
'extend': 20,
|
58 |
+
'img': imgFile_to_base64(image_file),
|
59 |
+
}
|
60 |
+
|
61 |
+
ret = request_post(url, data, timeout=600, headers = None)
|
62 |
+
print(len(ret['result']['imgs']))
|
63 |
+
|
64 |
+
for img in ret['result']['imgs']:
|
65 |
+
pilImage = base64_to_PILImage(img)
|
66 |
+
plt.imshow(pilImage)
|
67 |
+
plt.show()
|
68 |
+
plt.clf()
|
69 |
+
|
app.py
CHANGED
@@ -120,7 +120,6 @@ ram_model = None
|
|
120 |
kosmos_model = None
|
121 |
kosmos_processor = None
|
122 |
|
123 |
-
|
124 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
125 |
args = SLConfig.fromfile(model_config_path)
|
126 |
model = build_model(args)
|
@@ -621,7 +620,8 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
621 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
622 |
|
623 |
size = image_pil.size
|
624 |
-
|
|
|
625 |
# run grounding dino model
|
626 |
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw:
|
627 |
pass
|
@@ -655,25 +655,35 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
655 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
|
656 |
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_segment):
|
657 |
image = np.array(input_img)
|
658 |
-
sam_predictor
|
|
|
659 |
|
660 |
-
H, W = size[1], size[0]
|
661 |
for i in range(boxes_filt.size(0)):
|
662 |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
663 |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
664 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
665 |
|
666 |
-
|
667 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
|
669 |
-
masks, _, _, _ = sam_predictor.predict_torch(
|
670 |
-
point_coords = None,
|
671 |
-
point_labels = None,
|
672 |
-
boxes = transformed_boxes,
|
673 |
-
multimask_output = False,
|
674 |
-
)
|
675 |
-
# masks: [9, 1, 512, 512]
|
676 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
677 |
# draw output image
|
678 |
plt.figure(figsize=(10, 10))
|
679 |
plt.imshow(image)
|
@@ -686,7 +696,7 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
686 |
plt.savefig(image_path, bbox_inches="tight")
|
687 |
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
688 |
os.remove(image_path)
|
689 |
-
output_images.append(segment_image_result)
|
690 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
691 |
|
692 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
@@ -705,9 +715,9 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
705 |
masks_ori = copy.deepcopy(masks)
|
706 |
if inpaint_mode == 'merge':
|
707 |
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
708 |
-
|
709 |
mask = masks[0][0].cpu().numpy()
|
710 |
-
mask_pil = Image.fromarray(mask)
|
711 |
output_images.append(mask_pil.convert("RGB"))
|
712 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
713 |
|
@@ -718,7 +728,6 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
718 |
image_inpainting = sd_model(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
|
719 |
else:
|
720 |
# remove from mask
|
721 |
-
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_5_')
|
722 |
if mask_source_radio == mask_source_segment:
|
723 |
mask_imgs = []
|
724 |
masks_shape = masks_ori.shape
|
@@ -732,19 +741,17 @@ def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_t
|
|
732 |
for i in range(extend_shape_0):
|
733 |
for j in range(extend_shape_1):
|
734 |
mask = masks_ori[i][j].cpu().numpy()
|
735 |
-
mask_pil = Image.fromarray(mask)
|
736 |
-
|
737 |
if remove_mode == 'segment':
|
738 |
useRectangle = False
|
739 |
else:
|
740 |
useRectangle = True
|
741 |
-
|
742 |
try:
|
743 |
remove_mask_extend = int(remove_mask_extend)
|
744 |
except:
|
745 |
remove_mask_extend = 10
|
746 |
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
|
747 |
-
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]),
|
748 |
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
|
749 |
mask_imgs.append(mask_pil_exp)
|
750 |
mask_pil = mix_masks(mask_imgs)
|
@@ -820,48 +827,7 @@ def get_model_device(module):
|
|
820 |
except Exception as e:
|
821 |
return 'Error'
|
822 |
|
823 |
-
|
824 |
-
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
825 |
-
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
826 |
-
parser.add_argument("--share", action="store_true", help="share the app")
|
827 |
-
args, _ = parser.parse_known_args()
|
828 |
-
print(f'args = {args}')
|
829 |
-
|
830 |
-
if os.environ.get('IS_MY_DEBUG') is None:
|
831 |
-
os.system("pip list")
|
832 |
-
|
833 |
-
device = set_device()
|
834 |
-
if device == 'cpu':
|
835 |
-
kosmos_enable = False
|
836 |
-
|
837 |
-
if kosmos_enable:
|
838 |
-
kosmos_model, kosmos_processor = load_kosmos_model(device)
|
839 |
-
|
840 |
-
if groundingdino_enable:
|
841 |
-
groundingdino_model = load_groundingdino_model('cpu')
|
842 |
-
|
843 |
-
if sam_enable:
|
844 |
-
load_sam_model(device)
|
845 |
-
|
846 |
-
if inpainting_enable:
|
847 |
-
load_sd_model(device)
|
848 |
-
|
849 |
-
if lama_cleaner_enable:
|
850 |
-
load_lama_cleaner_model(device)
|
851 |
-
|
852 |
-
if ram_enable:
|
853 |
-
load_ram_model(device)
|
854 |
-
|
855 |
-
if os.environ.get('IS_MY_DEBUG') is None:
|
856 |
-
os.system("pip list")
|
857 |
-
|
858 |
-
# print(f'groundingdino_model__{get_model_device(groundingdino_model)}')
|
859 |
-
# print(f'sam_model__{get_model_device(sam_model)}')
|
860 |
-
# print(f'sd_model__{get_model_device(sd_model)}')
|
861 |
-
# print(f'lama_cleaner_model__{get_model_device(lama_cleaner_model)}')
|
862 |
-
# print(f'ram_model__{get_model_device(ram_model)}')
|
863 |
-
# print(f'kosmos_model__{get_model_device(kosmos_model)}')
|
864 |
-
|
865 |
block = gr.Blocks().queue()
|
866 |
with block:
|
867 |
with gr.Row():
|
@@ -968,5 +934,171 @@ if __name__ == "__main__":
|
|
968 |
print(f'device = {device}')
|
969 |
print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
|
970 |
computer_info()
|
971 |
-
block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
972 |
|
|
|
120 |
kosmos_model = None
|
121 |
kosmos_processor = None
|
122 |
|
|
|
123 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
124 |
args = SLConfig.fromfile(model_config_path)
|
125 |
model = build_model(args)
|
|
|
620 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
621 |
|
622 |
size = image_pil.size
|
623 |
+
H, W = size[1], size[0]
|
624 |
+
|
625 |
# run grounding dino model
|
626 |
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw:
|
627 |
pass
|
|
|
655 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
|
656 |
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_segment):
|
657 |
image = np.array(input_img)
|
658 |
+
if sam_predictor:
|
659 |
+
sam_predictor.set_image(image)
|
660 |
|
|
|
661 |
for i in range(boxes_filt.size(0)):
|
662 |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
663 |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
664 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
665 |
|
666 |
+
if sam_predictor:
|
667 |
+
boxes_filt = boxes_filt.to(sam_device)
|
668 |
+
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
669 |
+
|
670 |
+
masks, _, _, _ = sam_predictor.predict_torch(
|
671 |
+
point_coords = None,
|
672 |
+
point_labels = None,
|
673 |
+
boxes = transformed_boxes,
|
674 |
+
multimask_output = False,
|
675 |
+
)
|
676 |
+
# masks: [9, 1, 512, 512]
|
677 |
+
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
678 |
+
else:
|
679 |
+
masks = torch.zeros(len(boxes_filt), 1, H, W)
|
680 |
+
mask_count = 0
|
681 |
+
for box in boxes_filt:
|
682 |
+
masks[mask_count, 0, int(box[1]):int(box[3]), int(box[0]):int(box[2])] = 1
|
683 |
+
mask_count += 1
|
684 |
+
masks = torch.where(masks > 0, True, False)
|
685 |
+
run_mode = "rectangle"
|
686 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
# draw output image
|
688 |
plt.figure(figsize=(10, 10))
|
689 |
plt.imshow(image)
|
|
|
696 |
plt.savefig(image_path, bbox_inches="tight")
|
697 |
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
698 |
os.remove(image_path)
|
699 |
+
output_images.append(Image.fromarray(segment_image_result))
|
700 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
701 |
|
702 |
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
|
|
|
715 |
masks_ori = copy.deepcopy(masks)
|
716 |
if inpaint_mode == 'merge':
|
717 |
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
718 |
+
masks = torch.where(masks > 0, True, False)
|
719 |
mask = masks[0][0].cpu().numpy()
|
720 |
+
mask_pil = Image.fromarray(mask)
|
721 |
output_images.append(mask_pil.convert("RGB"))
|
722 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
723 |
|
|
|
728 |
image_inpainting = sd_model(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
|
729 |
else:
|
730 |
# remove from mask
|
|
|
731 |
if mask_source_radio == mask_source_segment:
|
732 |
mask_imgs = []
|
733 |
masks_shape = masks_ori.shape
|
|
|
741 |
for i in range(extend_shape_0):
|
742 |
for j in range(extend_shape_1):
|
743 |
mask = masks_ori[i][j].cpu().numpy()
|
744 |
+
mask_pil = Image.fromarray(mask)
|
|
|
745 |
if remove_mode == 'segment':
|
746 |
useRectangle = False
|
747 |
else:
|
748 |
useRectangle = True
|
|
|
749 |
try:
|
750 |
remove_mask_extend = int(remove_mask_extend)
|
751 |
except:
|
752 |
remove_mask_extend = 10
|
753 |
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
|
754 |
+
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), W, H),
|
755 |
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
|
756 |
mask_imgs.append(mask_pil_exp)
|
757 |
mask_pil = mix_masks(mask_imgs)
|
|
|
827 |
except Exception as e:
|
828 |
return 'Error'
|
829 |
|
830 |
+
def main_gradio(args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
831 |
block = gr.Blocks().queue()
|
832 |
with block:
|
833 |
with gr.Row():
|
|
|
934 |
print(f'device = {device}')
|
935 |
print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
|
936 |
computer_info()
|
937 |
+
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
|
938 |
+
|
939 |
+
import signal
|
940 |
+
import json
|
941 |
+
from datetime import date, datetime, timedelta
|
942 |
+
from gevent import pywsgi
|
943 |
+
import base64
|
944 |
+
|
945 |
+
def imgFile_to_base64(image_file):
|
946 |
+
with open(image_file, "rb") as f:
|
947 |
+
im_bytes = f.read()
|
948 |
+
im_b64_encode = base64.b64encode(im_bytes)
|
949 |
+
im_b64 = im_b64_encode.decode("utf8")
|
950 |
+
return im_b64
|
951 |
+
|
952 |
+
def base64_to_bytes(im_b64):
|
953 |
+
im_b64_encode = im_b64.encode("utf-8")
|
954 |
+
im_bytes = base64.b64decode(im_b64_encode)
|
955 |
+
return im_bytes
|
956 |
+
|
957 |
+
def base64_to_PILImage(im_b64):
|
958 |
+
im_bytes = base64_to_bytes(im_b64)
|
959 |
+
pil_img = Image.open(io.BytesIO(im_bytes))
|
960 |
+
return pil_img
|
961 |
+
|
962 |
+
class API_Starter:
|
963 |
+
def __init__(self):
|
964 |
+
from flask import Flask, request, jsonify, make_response
|
965 |
+
from flask_cors import CORS, cross_origin
|
966 |
+
import logging
|
967 |
+
|
968 |
+
app = Flask(__name__)
|
969 |
+
app.logger.setLevel(logging.ERROR)
|
970 |
+
CORS(app, supports_credentials=True, resources={r"/*": {"origins": "*"}})
|
971 |
+
|
972 |
+
@app.route('/imgCLeaner', methods=['GET', 'POST'])
|
973 |
+
@cross_origin()
|
974 |
+
def processAssist():
|
975 |
+
if request.method == 'GET':
|
976 |
+
ret_json = {'code': -1, 'reason':'no support to get'}
|
977 |
+
elif request.method == 'POST':
|
978 |
+
request_data = request.data.decode('utf-8')
|
979 |
+
data = json.loads(request_data)
|
980 |
+
result = self.handle_data(data)
|
981 |
+
ret_json = {'code': 0, 'result':result}
|
982 |
+
return jsonify(ret_json)
|
983 |
+
|
984 |
+
self.app = app
|
985 |
+
now_time = datetime.now().strftime('%Y%m%d_%H%M%S')
|
986 |
+
logger.add(f'./logs/logger_[{args.port}]_{now_time}.log')
|
987 |
+
signal.signal(signal.SIGINT, self.signal_handler)
|
988 |
+
|
989 |
+
def handle_data(self, data):
|
990 |
+
im_b64 = data['img']
|
991 |
+
img = base64_to_PILImage(im_b64)
|
992 |
+
results = run_anything_task(input_image = img,
|
993 |
+
text_prompt = data['remove_texts'],
|
994 |
+
task_type = 'remove',
|
995 |
+
inpaint_prompt = '',
|
996 |
+
box_threshold = 0.3,
|
997 |
+
text_threshold = 0.25,
|
998 |
+
iou_threshold = 0.8,
|
999 |
+
inpaint_mode = "merge",
|
1000 |
+
mask_source_radio = "type what to detect below",
|
1001 |
+
remove_mode = "rectangle", # ["segment", "rectangle"]
|
1002 |
+
remove_mask_extend = "10",
|
1003 |
+
num_relation = 5,
|
1004 |
+
kosmos_input = None,
|
1005 |
+
cleaner_size_limit = -1,
|
1006 |
+
)
|
1007 |
+
output_images = results[0]
|
1008 |
+
ret_json_images = []
|
1009 |
+
file_temp = int(time.time())
|
1010 |
+
count = 0
|
1011 |
+
for image_pil in output_images:
|
1012 |
+
try:
|
1013 |
+
img_format = image_pil.format.lower()
|
1014 |
+
except Exception as e:
|
1015 |
+
img_format = 'png'
|
1016 |
+
image_path = os.path.join(output_dir, f"api_images_{file_temp}_{count}.{img_format}")
|
1017 |
+
count += 1
|
1018 |
+
try:
|
1019 |
+
image_pil.save(image_path)
|
1020 |
+
except Exception as e:
|
1021 |
+
Image.fromarray(image_pil).save(image_path)
|
1022 |
+
im_b64 = imgFile_to_base64(image_path)
|
1023 |
+
ret_json_images.append(im_b64)
|
1024 |
+
os.remove(image_path)
|
1025 |
+
data = {
|
1026 |
+
'imgs': ret_json_images,
|
1027 |
+
}
|
1028 |
+
return data
|
1029 |
+
|
1030 |
+
def signal_handler(self, signal, frame):
|
1031 |
+
print('\nSignal Catched! You have just type Ctrl+C!')
|
1032 |
+
sys.exit(0)
|
1033 |
+
|
1034 |
+
def run(self):
|
1035 |
+
from gevent import pywsgi
|
1036 |
+
logger.info(f'\nargs={args}\n')
|
1037 |
+
computer_info()
|
1038 |
+
server = pywsgi.WSGIServer(('0.0.0.0', args.port), self.app)
|
1039 |
+
server.serve_forever()
|
1040 |
+
|
1041 |
+
def main_api(args):
|
1042 |
+
if args.port == 0:
|
1043 |
+
print('Please give valid port!')
|
1044 |
+
else:
|
1045 |
+
api_starter = API_Starter()
|
1046 |
+
api_starter.run()
|
1047 |
+
|
1048 |
+
if __name__ == "__main__":
|
1049 |
+
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
1050 |
+
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
1051 |
+
parser.add_argument("--share", action="store_true", help="share the app")
|
1052 |
+
parser.add_argument("--port", "-p", type=int, default=7860, help="port")
|
1053 |
+
args, _ = parser.parse_known_args()
|
1054 |
+
print(f'args = {args}')
|
1055 |
+
|
1056 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
1057 |
+
os.system("pip list")
|
1058 |
+
|
1059 |
+
device = set_device()
|
1060 |
+
if device == 'cpu':
|
1061 |
+
kosmos_enable = False
|
1062 |
+
|
1063 |
+
if kosmos_enable:
|
1064 |
+
kosmos_model, kosmos_processor = load_kosmos_model(device)
|
1065 |
+
|
1066 |
+
if groundingdino_enable:
|
1067 |
+
groundingdino_model = load_groundingdino_model('cpu')
|
1068 |
+
|
1069 |
+
if sam_enable:
|
1070 |
+
load_sam_model(device)
|
1071 |
+
|
1072 |
+
if inpainting_enable:
|
1073 |
+
load_sd_model(device)
|
1074 |
+
|
1075 |
+
if lama_cleaner_enable:
|
1076 |
+
load_lama_cleaner_model(device)
|
1077 |
+
|
1078 |
+
if ram_enable:
|
1079 |
+
load_ram_model(device)
|
1080 |
+
|
1081 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
1082 |
+
os.system("pip list")
|
1083 |
+
|
1084 |
+
# print(f'groundingdino_model__{get_model_device(groundingdino_model)}')
|
1085 |
+
# print(f'sam_model__{get_model_device(sam_model)}')
|
1086 |
+
# print(f'sd_model__{get_model_device(sd_model)}')
|
1087 |
+
# print(f'lama_cleaner_model__{get_model_device(lama_cleaner_model)}')
|
1088 |
+
# print(f'ram_model__{get_model_device(ram_model)}')
|
1089 |
+
# print(f'kosmos_model__{get_model_device(kosmos_model)}')
|
1090 |
+
|
1091 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
1092 |
+
# Provide gradio services
|
1093 |
+
main_gradio(args)
|
1094 |
+
else:
|
1095 |
+
if 0 == 0:
|
1096 |
+
# Provide API services
|
1097 |
+
main_api(args)
|
1098 |
+
else:
|
1099 |
+
# Provide gradio services
|
1100 |
+
main_gradio(args)
|
1101 |
+
|
1102 |
+
|
1103 |
+
|
1104 |
|
requirements.txt
CHANGED
@@ -15,14 +15,10 @@ setuptools
|
|
15 |
supervision
|
16 |
termcolor
|
17 |
timm
|
18 |
-
# torch
|
19 |
-
# torchvision
|
20 |
torch==2.0.0
|
21 |
torchvision==0.15.1
|
22 |
|
23 |
-
|
24 |
-
# torchvision==0.16.0
|
25 |
-
|
26 |
yapf
|
27 |
numba
|
28 |
scipy
|
|
|
15 |
supervision
|
16 |
termcolor
|
17 |
timm
|
|
|
|
|
18 |
torch==2.0.0
|
19 |
torchvision==0.15.1
|
20 |
|
21 |
+
gevent
|
|
|
|
|
22 |
yapf
|
23 |
numba
|
24 |
scipy
|