Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Bros model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
BROS_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"jinho8345/bros-base-uncased": "https://huggingface.co/jinho8345/bros-base-uncased/blob/main/config.json", | |
"jinho8345/bros-large-uncased": "https://huggingface.co/jinho8345/bros-large-uncased/blob/main/config.json", | |
} | |
class BrosConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to | |
instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the Bros | |
[jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The index of the padding token in the token vocabulary. | |
dim_bbox (`int`, *optional*, defaults to 8): | |
The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1) | |
bbox_scale (`float`, *optional*, defaults to 100.0): | |
The scale factor of the bounding box coordinates. | |
n_relations (`int`, *optional*, defaults to 1): | |
The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head. | |
classifier_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the classifier head. | |
Examples: | |
```python | |
>>> from transformers import BrosConfig, BrosModel | |
>>> # Initializing a BROS jinho8345/bros-base-uncased style configuration | |
>>> configuration = BrosConfig() | |
>>> # Initializing a model from the jinho8345/bros-base-uncased style configuration | |
>>> model = BrosModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "bros" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
dim_bbox=8, | |
bbox_scale=100.0, | |
n_relations=1, | |
classifier_dropout_prob=0.1, | |
**kwargs, | |
): | |
super().__init__( | |
vocab_size=vocab_size, | |
hidden_size=hidden_size, | |
num_hidden_layers=num_hidden_layers, | |
num_attention_heads=num_attention_heads, | |
intermediate_size=intermediate_size, | |
hidden_act=hidden_act, | |
hidden_dropout_prob=hidden_dropout_prob, | |
attention_probs_dropout_prob=attention_probs_dropout_prob, | |
max_position_embeddings=max_position_embeddings, | |
type_vocab_size=type_vocab_size, | |
initializer_range=initializer_range, | |
layer_norm_eps=layer_norm_eps, | |
pad_token_id=pad_token_id, | |
**kwargs, | |
) | |
self.dim_bbox = dim_bbox | |
self.bbox_scale = bbox_scale | |
self.n_relations = n_relations | |
self.dim_bbox_sinusoid_emb_2d = self.hidden_size // 4 | |
self.dim_bbox_sinusoid_emb_1d = self.dim_bbox_sinusoid_emb_2d // self.dim_bbox | |
self.dim_bbox_projection = self.hidden_size // self.num_attention_heads | |
self.classifier_dropout_prob = classifier_dropout_prob | |