|
|
|
import subprocess, os, sys, time |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True) |
|
print(f'pip install GroundingDINO = {result}') |
|
|
|
result = subprocess.run(['pip', 'list'], check=True) |
|
print(f'pip list = {result}') |
|
|
|
sys.path.insert(0, './GroundingDINO') |
|
|
|
if not os.path.exists('./sam_vit_h_4b8939.pth'): |
|
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True) |
|
print(f'wget sam_vit_h_4b8939.pth result = {result}') |
|
|
|
import gradio as gr |
|
|
|
import argparse |
|
import copy |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
|
|
import GroundingDINO.groundingdino.datasets.transforms as T |
|
from GroundingDINO.groundingdino.models import build_model |
|
from GroundingDINO.groundingdino.util import box_ops |
|
from GroundingDINO.groundingdino.util.slconfig import SLConfig |
|
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
|
|
|
|
from segment_anything import build_sam, SamPredictor |
|
import cv2 |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
import PIL |
|
import requests |
|
import torch |
|
from io import BytesIO |
|
from diffusers import StableDiffusionInpaintPipeline |
|
from huggingface_hub import hf_hub_download |
|
|
|
def get_device(): |
|
from numba import cuda |
|
if cuda.is_available(): |
|
device = 'cuda:0' |
|
else: |
|
device = 'cpu' |
|
return device |
|
|
|
def load_model_hf(model_config_path, repo_id, filename, device='cpu'): |
|
args = SLConfig.fromfile(model_config_path) |
|
model = build_model(args) |
|
args.device = device |
|
|
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) |
|
checkpoint = torch.load(cache_file, map_location=device) |
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) |
|
print("Model loaded from {} \n => {}".format(cache_file, log)) |
|
_ = model.eval() |
|
return model |
|
|
|
def plot_boxes_to_image(image_pil, tgt): |
|
H, W = tgt["size"] |
|
boxes = tgt["boxes"] |
|
labels = tgt["labels"] |
|
assert len(boxes) == len(labels), "boxes and labels must have same length" |
|
|
|
draw = ImageDraw.Draw(image_pil) |
|
mask = Image.new("L", image_pil.size, 0) |
|
mask_draw = ImageDraw.Draw(mask) |
|
|
|
|
|
for box, label in zip(boxes, labels): |
|
|
|
box = box * torch.Tensor([W, H, W, H]) |
|
|
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
|
|
x0, y0, x1, y1 = box |
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) |
|
|
|
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) |
|
|
|
|
|
font = ImageFont.load_default() |
|
if hasattr(font, "getbbox"): |
|
bbox = draw.textbbox((x0, y0), str(label), font) |
|
else: |
|
w, h = draw.textsize(str(label), font) |
|
bbox = (x0, y0, w + x0, y0 + h) |
|
|
|
draw.rectangle(bbox, fill=color) |
|
draw.text((x0, y0), str(label), fill="white") |
|
|
|
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) |
|
|
|
return image_pil, mask |
|
|
|
def load_image(image_path): |
|
|
|
|
|
image_pil = image_path |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
def load_model(model_config_path, model_checkpoint_path, device): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = device |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location=device) |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] |
|
boxes = outputs["pred_boxes"].cpu()[0] |
|
logits.shape[0] |
|
|
|
|
|
logits_filt = logits.clone() |
|
boxes_filt = boxes.clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
logits_filt.shape[0] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
|
|
return boxes_filt, pred_phrases |
|
|
|
def show_mask(mask, ax, random_color=False): |
|
if random_color: |
|
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) |
|
else: |
|
color = np.array([30/255, 144/255, 255/255, 0.6]) |
|
h, w = mask.shape[-2:] |
|
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) |
|
ax.imshow(mask_image) |
|
|
|
def show_box(box, ax, label): |
|
x0, y0 = box[0], box[1] |
|
w, h = box[2] - box[0], box[3] - box[1] |
|
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) |
|
ax.text(x0, y0, label) |
|
|
|
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' |
|
ckpt_repo_id = "ShilongLiu/GroundingDINO" |
|
ckpt_filenmae = "groundingdino_swint_ogc.pth" |
|
sam_checkpoint = './sam_vit_h_4b8939.pth' |
|
output_dir = "outputs" |
|
device = "cuda" |
|
|
|
device = get_device() |
|
|
|
print(f'device={device}') |
|
|
|
|
|
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae) |
|
|
|
|
|
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint)) |
|
|
|
|
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", |
|
torch_dtype=torch.float16 |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
|
|
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold): |
|
assert text_prompt, 'text_prompt is not found!' |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
image_pil, image = load_image(image_path.convert("RGB")) |
|
|
|
file_temp = int(time.time()) |
|
|
|
|
|
|
|
|
|
|
|
groundingdino_device = 'cpu' |
|
if device != 'cpu': |
|
try: |
|
from groundingdino import _C |
|
groundingdino_device = 'cuda:0' |
|
except: |
|
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!") |
|
|
|
groundingdino_device = 'cpu' |
|
boxes_filt, pred_phrases = get_grounding_output( |
|
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device |
|
) |
|
|
|
size = image_pil.size |
|
|
|
if task_type == 'segment' or task_type == 'inpainting': |
|
image = np.array(image_path) |
|
sam_predictor.set_image(image) |
|
|
|
H, W = size[1], size[0] |
|
for i in range(boxes_filt.size(0)): |
|
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) |
|
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 |
|
boxes_filt[i][2:] += boxes_filt[i][:2] |
|
|
|
boxes_filt = boxes_filt.cpu() |
|
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]) |
|
|
|
masks, _, _ = sam_predictor.predict_torch( |
|
point_coords = None, |
|
point_labels = None, |
|
boxes = transformed_boxes, |
|
multimask_output = False, |
|
) |
|
|
|
|
|
|
|
if task_type == 'detection': |
|
pred_dict = { |
|
"boxes": boxes_filt, |
|
"size": [size[1], size[0]], |
|
"labels": pred_phrases, |
|
} |
|
|
|
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0] |
|
image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg") |
|
image_with_box.save(image_path) |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
return image_result |
|
elif task_type == 'segment': |
|
assert sam_checkpoint, 'sam_checkpoint is not found!' |
|
|
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image) |
|
for mask in masks: |
|
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) |
|
for box, label in zip(boxes_filt, pred_phrases): |
|
show_box(box.numpy(), plt.gca(), label) |
|
plt.axis('off') |
|
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg") |
|
plt.savefig(image_path, bbox_inches="tight") |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
return image_result |
|
elif task_type == 'inpainting': |
|
assert inpaint_prompt, 'inpaint_prompt is not found!' |
|
|
|
mask = masks[0][0].cpu().numpy() |
|
mask_pil = Image.fromarray(mask) |
|
image_pil = Image.fromarray(image) |
|
|
|
|
|
|
|
image_source_for_inpaint = image_pil.resize((512, 512)) |
|
image_mask_for_inpaint = mask_pil.resize((512, 512)) |
|
image_inpainting = sd_pipe(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0] |
|
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1])) |
|
|
|
image_path = os.path.join(output_dir, f"grounded_sam_inpainting_output_{file_temp}.jpg") |
|
image_inpainting.save(image_path) |
|
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) |
|
os.remove(image_path) |
|
return image_result |
|
else: |
|
print("task_type:{} error!".format(task_type)) |
|
|
|
def change_task_type(task_type): |
|
if task_type == "inpainting": |
|
return gr.Textbox.update(visible=True) |
|
else: |
|
return gr.Textbox.update(visible=False) |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) |
|
parser.add_argument("--debug", action="store_true", help="using debug mode") |
|
parser.add_argument("--share", action="store_true", help="share the app") |
|
args = parser.parse_args() |
|
|
|
print(f'args = {args}') |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="pil") |
|
task_type = gr.Radio(["detection", "segment", "inpainting"], value="detection", |
|
label='Task type',interactive=True, visible=True) |
|
text_prompt = gr.Textbox(label="Detection Prompt", placeholder="Cannot be empty") |
|
inpaint_prompt = gr.Textbox(label="Inpaint Prompt", visible=True) |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
box_threshold = gr.Slider( |
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 |
|
) |
|
text_threshold = gr.Slider( |
|
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 |
|
) |
|
|
|
with gr.Column(): |
|
gallery = gr.outputs.Image( |
|
type="pil", |
|
).style(full_width=True, full_height=True) |
|
|
|
run_button.click(fn=run_grounded_sam, inputs=[ |
|
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery]) |
|
|
|
|
|
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). Thanks for their excellent work.' |
|
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' |
|
gr.Markdown(DESCRIPTION) |
|
|
|
block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share) |