Spaces:
Sleeping
Sleeping
File size: 72,780 Bytes
312981b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#some funtions for easy print\n",
"from IPython.display import display, Markdown\n",
"from typing import Any\n",
"\n",
"#def pretty_print(message: str) -> str:\n",
"# display(Markdown(message))\n",
"def pretty_print(message: str) -> None:\n",
" display(Markdown(f\"```markdown\\n{message}\\n```\"))\n",
"\n",
"def format_output(data: Any, indent=0) -> str:\n",
" spacing = ' ' * indent\n",
" if isinstance(data, dict):\n",
" result = []\n",
" for key, value in data.items():\n",
" result.append(f\"{spacing}{key}: {format_output(value, indent + 4)}\")\n",
" return \"\\n\".join(result)\n",
" elif isinstance(data, list):\n",
" result = []\n",
" for item in data:\n",
" result.append(format_output(item, indent + 4))\n",
" return \"\\n\".join(result)\n",
" elif isinstance(data, BaseMessage):\n",
" return f\"{spacing}{type(data).__name__}(content='{data.content}', name='{data.name}')\"\n",
" else:\n",
" return f\"{spacing}{str(data)}\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Title: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
"PMID: 39063396\n",
"\n",
"Title: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\n",
"PMID: 39051414"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-10-09 14:25:35 - Loaded .env file\n"
]
}
],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"import os\n",
"from typing import List\n",
"from langchain_community.document_loaders import PyMuPDFLoader\n",
"import uuid\n",
"\n",
"from langchain_openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.chains import (\n",
" ConversationalRetrievalChain,\n",
")\n",
"from langchain.document_loaders import PyPDFLoader\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.docstore.document import Document\n",
"from langchain.memory import ChatMessageHistory, ConversationBufferMemory\n",
"from chainlit.types import AskFileResponse\n",
"\n",
"import chainlit as cl\n",
"from langchain_qdrant import QdrantVectorStore\n",
"from qdrant_client import QdrantClient\n",
"from qdrant_client.http.models import Distance, VectorParams\n",
"from langchain_huggingface import HuggingFaceEmbeddings"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# set up basic RAG chain (will use it as a tool later). The RAG chain contains the information about 2 papers.\n",
"Title: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
"PMID: 39063396\n",
"\n",
"Title: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\n",
"PMID: 39051414\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"107\n"
]
},
{
"data": {
"text/plain": [
"Document(metadata={'source': 'https://www.mdpi.com/1660-4601/21/7/819/pdf', 'file_path': 'https://www.mdpi.com/1660-4601/21/7/819/pdf', 'page': 0, 'total_pages': 11, 'format': 'PDF 1.7', 'title': 'Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi', 'author': 'Yunxi Zhang, Lincy S. Lal, Yueh-Yun Lin, J. Michael Swint, Ying Zhang, Richard L. Summers, Barbara F. Jones, Saurabh Chandra and Mark E. Ladner', 'subject': 'During the COVID-19 pandemic, tele-mental health (TMH) was a viable approach for providing accessible mental and behavioral health (MBH) services. This study examines the sociodemographic disparities in TMH utilization and its effects on healthcare resource utilization (HCRU) and medical expenditures in Mississippi. Utilizing a cohort of 6787 insured adult patients at the University of Mississippi Medical Center and its affiliated sites between January 2020 and June 2023, including 3065 who accessed TMH services, we observed sociodemographic disparities between TMH and non-TMH cohorts. The TMH cohort was more likely to be younger, female, White/Caucasian, using payment methods other than Medicare, Medicaid, or commercial insurers, residing in rural areas, and with higher household income compared to the non-TMH cohort. Adjusting for sociodemographic factors, TMH utilization was associated with a 190% increase in MBH-related outpatient visits, a 17% increase in MBH-related medical expenditures, and a 12% decrease in all-cause medical expenditures (all p < 0.001). Among rural residents, TMH utilization was associated with a 205% increase in MBH-related outpatient visits and a 19% decrease in all-cause medical expenditures (both p < 0.001). This study underscores the importance of addressing sociodemographic disparities in TMH services to promote equitable healthcare access while reducing overall medical expenditures.', 'keywords': 'telehealth; mental health services; access to health care; healthcare resources; health expenditure; healthcare disparities; socioeconomic disparities; health equity', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.25', 'creationDate': \"D:20240622174944+08'00'\", 'modDate': \"D:20240622115218+02'00'\", 'trapped': ''}, page_content='Citation: Zhang, Y.; Lal, L.S.; Lin, Y.-Y.;\\nSwint, J.M.; Zhang, Y.; Summers, R.L.;\\nJones, B.F.; Chandra, S.; Ladner, M.E.\\nTele-Mental Health Service: Unveiling\\nthe Disparity and Impact on\\nHealthcare Access and Expenditures\\nduring the COVID-19 Pandemic in\\nMississippi. Int. J. Environ. Res. Public\\nHealth 2024, 21, 819. https://doi.org/\\n10.3390/ijerph21070819\\nAcademic Editor: Paul B.\\nTchounwou\\nReceived: 31 May 2024\\nRevised: 19 June 2024\\nAccepted: 20 June 2024\\nPublished: 22 June 2024\\nCopyright: © 2024 by the authors.\\nLicensee MDPI, Basel, Switzerland.\\nThis article is an open access article\\ndistributed\\nunder\\nthe\\nterms\\nand\\nconditions of the Creative Commons\\nAttribution (CC BY) license (https://\\ncreativecommons.org/licenses/by/\\n4.0/).\\nInternational Journal of\\nEnvironmental Research\\nand Public Health\\nArticle\\nTele-Mental Health Service: Unveiling the Disparity and Impact\\non Healthcare Access and Expenditures during the COVID-19\\nPandemic in Mississippi\\nYunxi Zhang 1,2,*\\n, Lincy S. Lal 3')"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pdf_links = [\n",
"\"https://www.mdpi.com/1660-4601/21/7/819/pdf\",\n",
"\"https://www.mdpi.com/2038-8330/16/3/41/pdf\"]\n",
"\n",
"documents = []\n",
"for pdf_link in pdf_links:\n",
" loader = PyMuPDFLoader(pdf_link)\n",
" loaded_docs = loader.load()\n",
" documents.extend(loaded_docs)\n",
"\n",
" CHUNK_SIZE = 1000\n",
" CHUNK_OVERLAP = 200\n",
"\n",
" text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=CHUNK_SIZE,\n",
" chunk_overlap=CHUNK_OVERLAP,\n",
" length_function=len,\n",
" )\n",
"split_chunks = text_splitter.split_documents(documents)\n",
"print(len(split_chunks))\n",
"split_chunks[0]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-10-09 14:42:52 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n"
]
}
],
"source": [
"EMBEDDING_MODEL = \"text-embedding-3-small\"\n",
"embeddings = OpenAIEmbeddings(model=EMBEDDING_MODEL)\n",
"\n",
"LOCATION = \":memory:\"\n",
"COLLECTION_NAME = \"PubMed\"\n",
"VECTOR_SIZE = 1536\n",
"\n",
"\n",
"qdrant_client = QdrantClient(LOCATION)\n",
"\n",
"qdrant_client.create_collection(\n",
" collection_name=COLLECTION_NAME,\n",
" vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),\n",
")\n",
"\n",
"qdrant_vector_store = QdrantVectorStore(\n",
" client=qdrant_client,\n",
" collection_name=COLLECTION_NAME,\n",
" embedding=embeddings,\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-10-09 14:42:54 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
"2024-10-09 14:42:55 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n"
]
}
],
"source": [
"qdrant_vector_store.add_documents(split_chunks)\n",
"qdrant_retriever = qdrant_vector_store.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"RAG_PROMPT = \"\"\"\n",
"CONTEXT:\n",
"{context}\n",
"\n",
"QUERY:\n",
"{question}\n",
"\n",
"You are a helpful assistant. Use the available context to answer the question. If you can't answer the question, say you don't know.\n",
"\"\"\"\n",
"\n",
"rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"\n",
"openai_chat_model = ChatOpenAI(model=\"gpt-4o-mini\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"rag_chain = (\n",
" {\"context\": itemgetter(\"question\") | qdrant_retriever, \"question\": itemgetter(\"question\")}\n",
" | rag_prompt | openai_chat_model | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-10-09 14:44:24 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
"2024-10-09 14:44:27 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
]
},
{
"data": {
"text/markdown": [
"```markdown\n",
"Tele-mental health (TMH) services leverage telecommunication and videoconferencing technologies to facilitate decentralized mental and behavioral healthcare. This approach allows patients in remote locations to access mental health services, overcoming geographical barriers and improving healthcare access, particularly in underserved rural communities. During the COVID-19 pandemic, TMH emerged as a viable solution for providing accessible mental and behavioral health services.\n",
"```"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pretty_print(rag_chain.invoke({\"question\" : \"What is Tele-mental health (TMH) services?\"}))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# set up agents"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import functools\n",
"import operator\n",
"\n",
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n",
"from langchain_openai.chat_models import ChatOpenAI\n",
"import functools\n",
"from IPython.display import Image, display\n",
"llm = ChatOpenAI(model=\"gpt-4-turbo\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from typing import Any, Callable, List, Optional, TypedDict, Union\n",
"\n",
"from langchain.agents import AgentExecutor, create_openai_functions_agent\n",
"from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n",
"from langchain_core.runnables import Runnable\n",
"from langchain_core.tools import BaseTool\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"from langgraph.graph import END, StateGraph\n",
"\n",
"def agent_node(state, agent, name):\n",
" result = agent.invoke(state)\n",
" return {\"messages\": [HumanMessage(content=result[\"output\"], name=name)]}\n",
"\n",
"def create_agent(\n",
" llm: ChatOpenAI,\n",
" tools: list,\n",
" system_prompt: str,\n",
") -> str:\n",
" \"\"\"Create a function-calling agent and add it to the graph.\"\"\"\n",
" system_prompt += (\"\\nWork autonomously according to your specialty, using the tools available to you.\"\n",
" \" Do not ask for clarification.\"\n",
" \" Your other team members (and other teams) will collaborate with you with their own specialties.\"\n",
" \" You are chosen for a reason! You are one of the following team members: {team_members}.\")\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" system_prompt,\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
" ]\n",
" )\n",
" agent = create_openai_functions_agent(llm, tools, prompt)\n",
" executor = AgentExecutor(agent=agent, tools=tools)\n",
" return executor\n",
"\n",
"def create_team_supervisor(llm: ChatOpenAI, system_prompt, members) -> str:\n",
" \"\"\"An LLM-based router.\"\"\"\n",
" options = [\"FINISH\"] + members\n",
" function_def = {\n",
" \"name\": \"route\",\n",
" \"description\": \"Select the next role.\",\n",
" \"parameters\": {\n",
" \"title\": \"routeSchema\",\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"next\": {\n",
" \"title\": \"Next\",\n",
" \"anyOf\": [\n",
" {\"enum\": options},\n",
" ],\n",
" },\n",
" },\n",
" \"required\": [\"next\"],\n",
" },\n",
" }\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", system_prompt),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" (\n",
" \"system\",\n",
" \"Given the conversation above, who should act next?\"\n",
" \" Or should we FINISH? Select one of: {options}\",\n",
" ),\n",
" ]\n",
" ).partial(options=str(options), team_members=\", \".join(members))\n",
" return (\n",
" prompt\n",
" | llm.bind_functions(functions=[function_def], function_call=\"route\")\n",
" | JsonOutputFunctionsParser()\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"from tempfile import TemporaryDirectory\n",
"from typing import Dict, Optional\n",
"from typing_extensions import TypedDict\n",
"import uuid\n",
"import os\n",
"from typing import Annotated, List, Tuple, Union\n",
"from langchain_core.tools import tool\n",
"\n",
"os.makedirs('./content/data', exist_ok=True)\n",
"\n",
"def create_random_subdirectory():\n",
" random_id = str(uuid.uuid4())[:8] # Use first 8 characters of a UUID\n",
" subdirectory_path = os.path.join('./content/data', random_id)\n",
" os.makedirs(subdirectory_path, exist_ok=True)\n",
" return subdirectory_path\n",
"\n",
"WORKING_DIRECTORY = Path(create_random_subdirectory())"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def retrieve_information(\n",
" query: Annotated[str, \"query to ask the retrieve information tool\"]\n",
" ):\n",
" \"\"\"Use Retrieval Augmented Generation to retrieve information about 2 papers:\n",
" Paper 1: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
" Paper 2: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\"\"\"\n",
" return rag_chain.invoke({\"question\" : query})\n",
"\n",
"@tool\n",
"def create_citation(\n",
" points: Annotated[List[str], \"cite the correct source paper and add citations/reference numbers inside to the paragraph. At the end of the paragraph, make a list of paper you referenced.\"],\n",
" file_name: Annotated[str, \"File path to save the outline.\"],\n",
") -> Annotated[str, \"Path of the saved outline file.\"]:\n",
" \"\"\"Added and saved citations.\"\"\"\n",
" with (WORKING_DIRECTORY / file_name).open(\"w\") as file:\n",
" for i, point in enumerate(points):\n",
" file.write(f\"{i + 1}. {point}\\n\")\n",
" return f\"citation saved to {file_name}\"\n",
"\n",
"\n",
"@tool\n",
"def read_document(\n",
" file_name: Annotated[str, \"File path to save the document.\"],\n",
" start: Annotated[Optional[int], \"The start line. Default is 0\"] = None,\n",
" end: Annotated[Optional[int], \"The end line. Default is None\"] = None,\n",
") -> str:\n",
" \"\"\"Read the specified document.\"\"\"\n",
" with (WORKING_DIRECTORY / file_name).open(\"r\") as file:\n",
" lines = file.readlines()\n",
" if start is not None:\n",
" start = 0\n",
" return \"\\n\".join(lines[start:end])\n",
"\n",
"\n",
"@tool\n",
"def write_document(\n",
" content: Annotated[str, \"Text content to be written into the document.\"],\n",
" file_name: Annotated[str, \"File path to save the document.\"],\n",
") -> Annotated[str, \"Path of the saved document file.\"]:\n",
" \"\"\"Create and save a text document.\"\"\"\n",
" with (WORKING_DIRECTORY / file_name).open(\"w\") as file:\n",
" file.write(content)\n",
" return f\"Document saved to {file_name}\"\n",
"\n",
"\n",
"@tool\n",
"def edit_document(\n",
" file_name: Annotated[str, \"Path of the document to be edited.\"],\n",
" inserts: Annotated[\n",
" Dict[int, str],\n",
" \"Dictionary where key is the line number (1-indexed) and value is the text to be inserted at that line.\",\n",
" ] = {},\n",
") -> Annotated[str, \"Path of the edited document file.\"]:\n",
" \"\"\"Edit a document by inserting text at specific line numbers.\"\"\"\n",
"\n",
" with (WORKING_DIRECTORY / file_name).open(\"r\") as file:\n",
" lines = file.readlines()\n",
"\n",
" sorted_inserts = sorted(inserts.items())\n",
"\n",
" for line_number, text in sorted_inserts:\n",
" if 1 <= line_number <= len(lines) + 1:\n",
" lines.insert(line_number - 1, text + \"\\n\")\n",
" else:\n",
" return f\"Error: Line number {line_number} is out of range.\"\n",
"\n",
" with (WORKING_DIRECTORY / file_name).open(\"w\") as file:\n",
" file.writelines(lines)\n",
"\n",
" return f\"Document edited and saved to {file_name}\""
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"import operator\n",
"from pathlib import Path\n",
"\n",
"class DocWritingState(TypedDict):\n",
" messages: Annotated[List[BaseMessage], operator.add]\n",
" team_members: str\n",
" next: str\n",
" current_files: str"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"def prelude(state):\n",
" written_files = []\n",
" if not WORKING_DIRECTORY.exists():\n",
" WORKING_DIRECTORY.mkdir()\n",
" try:\n",
" written_files = [\n",
" f.relative_to(WORKING_DIRECTORY) for f in WORKING_DIRECTORY.rglob(\"*\")\n",
" ]\n",
" except:\n",
" pass\n",
" if not written_files:\n",
" return {**state, \"current_files\": \"No files written.\"}\n",
" return {\n",
" **state,\n",
" \"current_files\": \"\\nBelow are files your team has written to the directory:\\n\"\n",
" + \"\\n\".join([f\" - {f}\" for f in written_files]),\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"doc_writer_agent = create_agent(\n",
" llm,\n",
" [retrieve_information,write_document, edit_document, read_document],\n",
" (\"You are an expert writing paper summarization.\\n\"\n",
" \"Below are files currently in your directory:\\n{current_files}\"\n",
" \"You may only speak as your role. You must not speak as any other roles.\"),\n",
")\n",
"context_aware_doc_writer_agent = prelude | doc_writer_agent\n",
"doc_writing_node = functools.partial(\n",
" agent_node, agent=context_aware_doc_writer_agent, name=\"DocWriter\"\n",
")\n",
"\n",
"\n",
"citation_agent = create_agent(\n",
" llm,\n",
" [create_citation, write_document, edit_document, read_document],\n",
" (\"You are an expert in research citation. You will add citations numbers inside the research summarization and at the end of the paragraph, create a citation list.\\n\"\n",
" \"Below are files currently in your directory:\\n{current_files}\"\n",
" \"You may only speak as your role. You must not speak as any other roles.\"),\n",
")\n",
"context_aware_citation_agent = prelude | citation_agent\n",
"citation_node = functools.partial(\n",
" agent_node, agent=context_aware_citation_agent, name=\"CiteEditor\"\n",
")\n",
"\n",
"copy_editor_agent = create_agent(\n",
" llm,\n",
" [write_document, edit_document, read_document],\n",
" (\"You are an expert in research ariticle editing who focuses on fixing grammar, spelling, and tone issues\\n\"\n",
" \"Below are files currently in your directory:\\n{current_files}\"\n",
" \"You may only speak as your role. You must not speak as any other roles.\"),\n",
")\n",
"context_aware_copy_editor_agent = prelude | copy_editor_agent\n",
"copy_editing_node = functools.partial(\n",
" agent_node, agent=context_aware_copy_editor_agent, name=\"CopyEditor\"\n",
")\n",
"\n",
"\n",
"doc_writing_supervisor = create_team_supervisor(\n",
" llm,\n",
" (\"You are a supervisor tasked with managing a conversation between the\"\n",
" \" following workers: {team_members}. You should always verify the technical\"\n",
" \" contents after any edits are made. \"\n",
" \"Given the following user request,\"\n",
" \" respond with the worker to act next. Each worker will perform a\"\n",
" \" task and respond with their results and status. When each team is finished,\"\n",
" \" you must respond with FINISH.\"),\n",
" [\"DocWriter\", \"CiteEditor\",\"CopyEditor\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"authoring_graph = StateGraph(DocWritingState)\n",
"authoring_graph.add_node(\"DocWriter\", doc_writing_node)\n",
"authoring_graph.add_node(\"CiteEditor\", citation_node)\n",
"authoring_graph.add_node(\"CopyEditor\", copy_editing_node)\n",
"authoring_graph.add_node(\"supervisor\", doc_writing_supervisor)\n",
"\n",
"authoring_graph.add_edge(\"DocWriter\", \"CiteEditor\")\n",
"authoring_graph.add_edge(\"CiteEditor\", \"CopyEditor\")\n",
"authoring_graph.add_edge(\"CopyEditor\", \"supervisor\")\n",
"\n",
"\n",
"\n",
"authoring_graph.add_conditional_edges(\n",
" \"supervisor\",\n",
" lambda x: x[\"next\"],\n",
" {\n",
" \"DocWriter\": \"DocWriter\",\n",
" \"CiteEditor\": \"CiteEditor\",\n",
" \"CopyEditor\" : \"CopyEditor\",\n",
" \"FINISH\": END,\n",
" },\n",
")\n",
"\n",
"authoring_graph.set_entry_point(\"supervisor\")\n",
"chain_linkedin = authoring_graph.compile()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## the whole team"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAKdAZEDASIAAhEBAxEB/8QAHQABAQACAwEBAQAAAAAAAAAAAAYFBwMECAECCf/EAF4QAAEEAQIDAgYHFQYDBQUJAAEAAgMEBQYRBxIhEzEIFBUiQZQWFzI3UVbTIyQ0NkJTVFVhcXJ1dpGTsbO00dLUUmJ0gaGyM3OVJjVDRIJFhJKjwQkYJUZjZIOkwv/EABsBAQEAAwEBAQAAAAAAAAAAAAABAgMFBAYH/8QAOBEBAAECAgYJAwMDBAMAAAAAAAECEQMSFCExUZHRBBNBUmFicZKhM7HBQoHwBSIyFSOywlOi4v/aAAwDAQACEQMRAD8A/qmiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC/EkrIWF8j2sY3vc47ALE5vMWIbMWNxkbJsrO0vBlBMNaMHYyy7bHbfo1gILz0BADns6kegsXYkE+XY7P29ye2yQEjW79NmR7cjBt06N3+Ek7lboopiM1c2+623si7VGGY4h2WogjvBss/ivnsqwv24oess/ivjdKYRoAGHx4A6ACqz+C++xXC/aeh6sz+Cy/2fH4XUeyrC/bih6yz+K7FTMUMg7lq3a1l3wQytef9Cuv7FcL9p6HqzP4Lr29DadvMLZ8Fjn9NubxVgcOu/Qgbjr16J/s+PwamcRS0lO7o1jrNSWzk8Mzd01GUunsQN/tQOPnPA9MbuYke4O4DH0sE8VqCOaGRk0MjQ9kjHBzXNI3BBHeCFrroy64m8JMORERa0EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQS+hNshVv5t+zp8lblcHfBBG90cLfuDlbzbDpzPd377n98QeJGmuFenH53VWWiw+LbI2ETSNc8vkd7ljGMBc9x2PRoJ6H4F+eHA8X0tHRduJaFiem8EbdWSuAP3i3lcPuOCiPCh0/h9RcNoY8xg9UZkVslXtVJNGwmXJ0LLObs7UTR/Y3O/Q+67l6OkfVqjx+Oz4Wdqa4neGbo3Q2D0DmcdI/M4nVOX8S8bFWyzxevG8tsTcnYlznsds0RbBxJJAPKVX6r8KHhloarg7Gd1IcbDmqceQpPlx9rZ8D/cvftEeyB+CTlI9IC89ZqHivnuDHDXU2qtN5zUGS0rr+HKOqxY9rMvZxMXaNZNJVYek3nbFg69xPpcvzx2yHEDihqLLwTae4nV9KZfTTW6dw+Ag8UY65I17ZGZUg/Mxvygse7l5d+m56+dHo/XPhJ8N+HGQxtHP6mjq2clRGRpMgqz2fGa5OwfGYo3B2/eADuQCdtuqjsb4YOlchx4k4duZYgifUquqX3U7RfYtTubywuj7Edk0Nc0l7yG7nYkEFa44D6K1BDxV4KZHKaay1ODEcNTjbFi/j5Ym1LbJQzsnOc0Bjy0O2adiWncdCrPLSZrh74Y9rPy6R1Bm8BqfBUsTBk8LSNmGpO2wQ42SCOyYGu5i4+ju367B6RUvo7bHZDPYRuwgo2hNWaPqIZm8/L94SdqAO4NDQO7YVCmNODxrV2qbrd+ybJXotJG3MY4+dxHwgGYj77SPQvRh66K4ndHG8fiZWNkqdERedBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREE3kYJdOZaxmasD7FK0G+Ua0DHPl5mgNbPG0blxDRyuaBu5rW8vVnK/OUMhVylVlmnYitV3+5lheHNP+YXYWAyGiMXduSXImz427ISZLOOsPrukO227wwgPO23V4PcPgC35qa4iK9Ux2/z+eC7drPopf2ETju1Tnmj0Dt4j+uPdSfELH5XTEWnnUtU5gm/mqlCbtpYT8ykcQ7l+Zjzvg/Ur1eH3/iS0b21EUv7CbHxqz36aH5JffYHHMOW5nM5diI2Mb7xiDh93sgw/6/cTJhxtr+JLRvdrMahcyy7F4ns7eacPcO3dFVBHSSYjuHwN3Bf3DYczm97B4eHA4uGlAXPazmc+SQ7vlkc4ufI4/wBpznOcfukr94rD0cHUFXH1IadcOLuzhYGguPe4/CT3knqfSu4sKqotko2fcERFqQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFr3jIQING7kj/ALUY/u/DP3VsJa94x79ho3bb6aMf37f2z8KDYSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAtecZf8AgaM6gf8AajHd4/vlbDWvOMu3YaM3+NGO9G/1ZQbDREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBFgdQ6lkxdiGhQqtv5SZjpWwySmKOOMdOeR4a7lG5AAAJJ32GzXEYd2d1fudqGEI9G9ub5Nemjo9dcZtUeswtlsiiPLusPsDB+tzfJp5d1h9gYP1ub5NZ6LXvjjBZboojy7rD7Awfrc3yaeXdYfYGD9bm+TTRa98cYLLdFEeXdYfYGD9bm+TTy7rD7Awfrc3yaaLXvjjBZboojy7rD7Awfrc3yaeXdYfYGD9bm+TTRa98cYLLdeLfDH8MCzwa4h4jS17QstyrTt085TyYyTWNuRsO7mhhhdyEP5277n3IPp2Xpvy7rD7Awfrc3ya1Hx/4C2vCI9jBz9LEQSYO+LTZILMvNPCdu0gcez6Nfyt6+jbp3pote+OMFm5OEeuL3ErhtgNU5DBv05Zy1fxoY2Sft3RRucezJfyt35mcr+4bc23o3VeoaLL6tgiZFFjcDHGxoa1jLUwDQO4Adn0C/Xl3WH2Bg/W5vk00WvfHGCy3RRHl3WH2Bg/W5vk08u6w+wMH63N8mmi1744wWW6KI8u6w+wMH63N8mnl3WH2Bg/W5vk00WvfHGCy3RRHl3WH2Bg/W5vk08u6w+wMH63N8mmi1744wWW6KI8u6w+wMH63N8mnl3WH2Bg/W5vk00WvfHGCy3RRQ1XqHHNNjJYqjNTYOaU4+zI+ZjfS5rHRjn2G5IBB6dA4kBWNaxFcrxTwSNlhlYHskYdw5pG4I+4QtOJhVYeuos5ERFpQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQQ1o78TcqPQMPS26fDNb3/UFlliLPvnZb8T0f29tZddar9PpH2hZEU1rziRprhliY8lqbLRYurLKIIeZrpJJpD3MjjYC97vuNBKxeK42aMzWEx2XqZd7qOQykeFrvkpWInOuP8AcxFjow5pO46uAHwla7wi5RF1cplaeDxtrI5G1DRoVYnTT2bDwyOKNo3c5zj0AABJJVHaRSOvOLGluGmFxuW1Dkn1KORsMq1JK9Se06aVzHPa1rIWPd1axx3226LsaD4laZ4nY2e9pnLw5SCvKYZw1ro5IJO/lkjeA9h+44BS8bBTIiKgiIgIsVNqnEwz5aDx6KWziYW2L1eE9rLXY5rnNLmN3du4McQNtzt0C1ePC/4Vm4agzeUNsRiUwexzJ9oGEkB3L4vvtuCN/uKTMRtG5UXFVsx3a0NiIkxSsEjC5paSCNxuDsR94rlVBEWH1fq7E6D03fz+dt+I4miwSWLHZvk5G7gb8rAXHqR3AqDMIi6NrOY+jlKONsXYIchfEhq1XyASTiMAyFje8hoI3I7tx8IVHeREQCNxse5cXC5xdw00oT3nFVf2TVyrh4We9npP8VVf2TVji/Rn1j7SvYqURFzkEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREELZ987Lfiej+3trLrEWffOy34no/t7ay661f6fSPtCy0bqN1c+GPpFuYLfFhpO47CCb3Pj3jDO37P/wDU7Dl/9O65PCkqDN4bQdCG/NRkk1ti4HWaT2iaAuLurSQQ1wDgQSOm4K2Pr/hlpjijjIKGp8RFlK9eUTwOc98csEg+qjkYWvYfutIWKw/AvQ2AxNLG0MCyCrTykeaj+eJnSOuR+4mkkLy+Rw7vPLhsANlpmJ1wjTd3U83Difi1pO9qDVWXxlJ2FGIdFkO0yonvF8fYR2ZNyA6SNuznHzQ92x7lG5tuqI+HPhBaL1NbyjK2M03Xy1KvY1BLkrFcyRWC5jrRZG97HGBm8bt27Fw3c1y9R53hHpLU0uopMnhmXH6hirQ5Ivmk+bNrlxgI2d8zcwvcQ5nKd9jvuBt09PcDdD6XmyU2PwTWy5OkcfffYszWDdgJJLZzI93anqRzP3cGnlB26LHLI0xxTwlzRmjOCEemhYz+QOq6livFnctNKJHuoWfNM8naOYz4AAQPQFiNVaC1zidb4fUGazrdLZrXmr8dRu1NKW5AyGlXoXAI3Sua0yPfuSSW7AtYR1aNt+YTgXonTuPxFKjiZmVcRkW5ajHLkLM3YWWxGJrml8hPKGOLQz3A/sqlz+kcTqi1hrOTqeMzYe6MhRd2j2djOGPjD9mkc3myPGztx17twFco0odL29VcYMroKXVuqMPp/TeCq3KjaWamZcuTWZp+eeWwXGSUR9m1ga4lo36g9yieFuodQcac/oDH5zVWcgqWNLZWa3Jhr76Pj8lbJMrRWC6MgguZ5+7C3ffb3JIPoXXnBzSHEy3WtahxBt268ToI7MFqarL2Tju6Jz4Xsc5hPUscS37iyGL4cabweYxeUx+JhpW8ZjXYema7nMjgqOex5ibGDybc0bDvtv07+pTLNx5m0BktRYzRPCbWU2sdRZTK5XVhwN6K/kHS1bFTt7NcNMHRnOBCx3abc5duSTv0+ZmxmqPC/i1xCj1vqOpnNN6oy3k2OTKyvoiOG1tHWdWcezcx3uACNxzANI2AXo+rwk0nSwOEwsOK5Mbhcj5WoQeMynsbXaPk7TmL93efK88riW+dttsBtr3RPguadqZrPZrVeMrZfKWtTXc3U5Llh1drJJzJCZICWxOkaD1JY7Y9ziscs7BieFek693wmOJuZmt5ivcrw4i14n5VsdgXTVpuZskXPySNadw1rgQzbzQF+9c6gs6S8IXXOcpQC1cxnDAXYICCRJJHbtva3p8JaB/mtr5ThTpfMa2p6us41w1FVYyNl2C1NCXtYS5jZGMeGygEnYPDtt1k/YbhvZfNqjxIHOTY9uLktGR5DqzZHSCPk35fdvcd9t+u2+3RZ2Hnfg7gOK2Vm0Nq9uWNihkRDcy09zVkt6C9Wli5nCKkajI4HAua5ojeA3lLTzbkqUwMOoMjw34Uakk15q5uU1Dqk4W+5uXk7J9N0tpnI2M7ta4NhbtIBzgknm3229HaS4C6E0LqBmZwWBGOuxmQwtZandBAZN+fsoHPMcW+535GjvWQqcJNJ0MFgMNBiuTG4G+MpjoPGZT2Fnmkdz8xfu7rLIdnEjzu7oNscsjzrqjLZ/Byar0XW1XnxSx2vtPY+pkH5KR16OrcbWklhM5Je9oMjwOcu6HY7hY7j6+9ovHcVdEQZ3KZzT0mka+aEeYuvuzULBuiIsbLIS/ke0c3K4nYsO2wK3bxd4B0Ne0p242tWgtZXUGKyubfZsTNFqGq6Nrmt5d+V3YxhoDQ0E9SQeqosDwM0LpvB53EUtPxOpZ1vJlPHJpbUtxvKWgSSyuc9wAJ2HN5u522TLI1hx/u5PU2r72E0rZ1K3M4XCeUbUmO1CcTQpteZOye8NjeZ5SY3+YRycrepG6l3UXcW9X+DhnM3k8tXyGa0xcntSYvJz0t5RWrSFzOye3kLnPdzcu3MA0HcNG27r/g96AyfkvxrAduMbTbjoQ65Y2krNO7YZvmnzdgJPmy846n4SuXIcB9DZTS+D09YwjvJeDcXYxsV2xHLU33BEczZBIG7OI5ebbbYbbAAWaZkaOyT+JfF3XHEZ2CuT0jp/LPxGOZBquXFsp8kMbmTSVWVZW2A9zy/eRxBHmgN5dz6e0y3Ks03im5x0D82KkQvOq79kbHIO0LNwDy83Nt0HTZRupvB80Bq/MeVcrp8T33Qx15pYrc8PjMbBsxs7Y5GiYAdPmgd06LYgAAAHcFYiY2guHhZ72ek/xVV/ZNXMuHhZ72ek/xVV/ZNVxfoz6x9pXsVKIi5yCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCFs++dlvxPR/b21l1w6lwt+PLMzWLibcn7AVrFN8nIZWAucwscegc0ud0PQhx6jYb4t2VzzXEDR2UcAe8Waex/+eutFsSmJiY2RGuYjZFu1la7NIsJ5Wz3xMyvrVL5dPK2e+JmV9apfLq5PNHujmWZtFhPK2e+JmV9apfLp5Wz3xMyvrVL5dMnmj3RzLM2ikNS6+s6PxT8lmdN38fTa5rBJLbp7ve47NjY0T7ve47BrGgucSAASdl36eoM5eqQ2I9FZlkczBI1s0tSN4BG45mOmDmn4QQCO4gFMnmj3RzLKBFhPK2e+JmV9apfLp5Wz3xMyvrVL5dMnmj3RzLM2iwnlbPfEzK+tUvl08rZ74mZX1ql8umTzR7o5lmbRYTytnviZlfWqXy6eVs98TMr61S+XTJ5o90cyzNosJ5Wz3xMyvrVL5dPK2e+JmV9apfLpk80e6OZZm0WjuKvhc6S4JZ6DDa0xmawt+xALETDXZM2SMkjmD43uaeoI79wqfhdxxo8Z9Oy53RuCymZxUVl1R9gOrw7Sta1xbtJK09A9vXbbr9wpk80e6OZZspFhPK2e+JmV9apfLp5Wz3xMyvrVL5dMnmj3RzLM2iwnlbPfEzK+tUvl08rZ74mZX1ql8umTzR7o5lmbXDws97PSf4qq/smrGF+pMrGa8GCmw75N2m5fnhe2EdPODYpHFxA32HTcjqQOqscRjIcLiqWPr83i9SFkEfOd3crWho3PpOwWjHmKcPJeJmZjZN9l93qbIdtERc9iIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLis2YaVaWxYlZBXiYZJJZXBrWNA3LiT0AA67lByqP1DrySPKS4HTVHy9qJjQZY+fs6lEHudZm2PJ06iNodI7vDeXdwxrslmeKHmYee3pzShcRJluTs7uRb8FUO6wxHqO2cOdw3MQaCyZWGntOYzSmJhxmIpRUKMW5bFC3bdxO7nOPe5ziS5ziSXEkkkklBhNPaBbTycecz106i1I3n7O7LH2cNNrhs5lWHdwhaR0J3dI4dHvdsNq1EQEREBERAREQEREGifC18F6n4TWkMXQbdiw+ax11ktfJSRmTkgc4NnYWgjm8zzgNxu5jRu0EkZvSGisl4PWl8dg9O1ptT6Hx0PZtoxxRtylTqS+RpbyMstJLnuZytk3Li0ylzWDbaIMbp7UeM1Xi48hibkd2o8kc8Z6scO9j2nqx47i1wDmnoQCskpHP8P47eYfn8Hcdp/Urg1slyJpfBba3bZlqDma2YADYO3EjBuGPYCd+TSutJMlkX4LOU24XU8MRmdTEnaQ2ogWtdPWkIHaxhzmh3QOYXsD2t52FwVSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg4rNmGlWlsWJWQV4WGSSWVwaxjQNy4k9AAOu5UJSx8nFWWLKZWN0ekWkSY/Dys2N8h27bdkelh2BigO2w8+QF5ayD7xL5tQZ7SmkCHeJZSxLdyIAO0lSsGvMRI7g+Z9drh3OZztIIcVfoCIiAiIgIiICIiAiIgIiICIiAsFrDSkOrsUyu6eSherSi1QyNfbtqVhoIbKzfp3Oc1zT5r2PexwLHuBzqIJnQGq5dVYacX4Y6mcxtl+PylSIkshssDSeXfryPY+OVhPUslYTsSQqZa9s8ul+N1KVrnMraqxj68rNvM8bqHnjPf7p8MswPTqK7PgWwkBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEXXyGRqYmnJbvWoadWIbvnsSCNjB8JcegViJmbQOwil3cUNHscWu1RiGuB2IN2Pcf6r57aWjvjTiPXY/4rfo+N3J4SyyzuVKKW9tLR3xpxHrsf8U9tLR3xpxHrsf8AFNHxu5PCTLO5Uopb20tHfGnEeux/xT20tHfGnEeux/xTR8buTwkyzua/1RxW0RQ486YFrWOBrOo4XNVbQlykDfF5vGccOzk3eOV/mSeaRv5ju7Y77ipXa+SpwW6k8VqpYjbLDPA8PjkY4btc1w6EEEEEd+6/mnxh8GfTmsPDKo3quZx7tA6hnOZy1xltnZwPDi6xC52/R0rurf8Amn+yV/QeDiXomrBHDDqXCwwxtDGRx24mta0DYAAHoAPQmj43cnhJlncrEUt7aWjvjTiPXY/4p7aWjvjTiPXY/wCKaPjdyeEmWdypRS3tpaO+NOI9dj/intpaO+NOI9dj/imj43cnhJlncqUUt7aWjvjTiPXY/wCKzmKzWPztY2MberX4A4sMlaVsjQ4d4JBOxHwLCrCxKIvVTMfslph3URFqQREQEREBERAREQa94wuNBui8w2Ts/J2p6AJ3PUWXOo7Hb4fGx/nsthLXnH49lwqylnlDjTsUro336GG3DKD0+As3/wAlsNAREQEREBERAREQEREBERAREQEREBERAREQEREBERAUPl+XJ8QZK1gCWLG4+CzXjeN2skmknY6Tbu5uWENB23Ac4A+c7e4ULP752a/E+P8A211ezo22qd0fmIZR2suiIt7EREQEREBERAREQEREBYW4W4zV+nbUAEU16y+jYLRt20fYTSNDvh5XRggncjdwG3MVmlg879Mejfxs79zsrZRrvHhP2llG1foiLkMRERAREQEREBERBrzwh2g8CdfPLgwRYW1NzO32HJG5+/T8FbDWvfCIDTwA4mc4LmexnJkhp2J+dZO47Hb8y2Ax3M0H4Rug/SIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIChZ/fOzX4nx/wC2uq6ULP752a/E+P8A211e3o36/T8wyjZLLrSnE6/mtd8ZsHw0x2dyGmcS3DS6gy97Ey9jcsRiYQwwRy7ExgvLnOLepDQAR6d1rVfFDhnqPIa3wWu9DZDHUtU4yrLjZ6uYbJ4nkKcjmvMUjo93sLXtD2uAPXfcELZVsYpHixTzPB3T/Dupp7L6k1LYs60rxmHI5cvntRvrWPnZ8zyN4uZjXEP5ttt+uwCqsNxozOSwes47GkI6WrtLTxRW8NJl4hXeyVjZGTNtua1oj7NznEloI5HDYnbfq5Th/wAQdaw6Os6nu6dbfw+q4M1JXxYnbDFUjryxmJj3gulkLpObctYOpHoG+E4heD/ntW5nX1+tbxT4s1ksJkalC86QwWhSaO0r2wG9I3kfU8/cCR6FhrjYMXlfCYyerOC3FTI6epUKGrdKUi97qOXhyFRjXxOe2eKwyMtkLQ2Q9m5g86PlO2+47eqdZa21NX4XaMtyDRuU1fPO67kMPf8AGZm0q1YTP7KV0TOzllLmjcNPKN9ifR2MfwI1RlxxVZn7GBx0OucJDj2xYQSluPkjimiA2e1vat5ZWu5vMO4I5QNiu3k+FWv9SaX0nfuXNPYjX+kLgmxNqk+eelZiMAhlinDmse0StLt+Xfl2bsT1T+4Ye9mct4O3EeDFeXszq7TOY0/k8pBTz142bNa1RYyRwbYcC/s5GP22dzbOG4+BUml+PuXt2tEyan0a3TmG1hGzyXkoMq22GTPgM7Ip29mzsy5jXcpBcNxsdvRP6m4b6uyNTWOvOIN3DuyVHSuQxuKxWB7V9aqySIummdJKGufI/ka3o0ANHpJ3XT4YcOdacQtOcJbOq58DX0fp6hVyVOri3TSWrs3ifZQmbnaGxhrJXEhpdufSAmu+ofrHeGvp/I5ahLHWxLtN378dCCzHqKs/J+fJ2TJn48ee2MuIPui8NPMWDYhZyz4SmUqV83mJdEFuk8JqKXT+QynlVhmaW2xXE8cHZ+ezdzC4FzSNyBzAcx5+FHDDX3C+HE6UbLpXJ6LxczmQZKdkwyjqu7nMidGG9nzt3De059iG+53XWy3AjP3+EfEDS0dzGjIag1NZzVWV0snZMhkvMsNbIeTcP5GEEAEb7dduqf3D54QHFLM6R1ZgmYScsx+nGM1HqVrd/Px7phV7M7d+7ZLM2x9NUfcWfz+dvM8JfRWNgyFgYmzpzJWJKkc7uwle2asGPcwHlcQHO2JG4Djt3rDf/drj1jqDXuZ1tk8gbGorbq8dfA5q3Vr+TGRCKCGZjCxsjtjK5wcHN3lcASCd+Thzwf1dgtRcOMrqLIYy5NprTlvBW5KssjnTudJD2MjeaMb/ADOEc+5BDj05h1V13G7lg879Mejfxs79zsrOLB536Y9G/jZ37nZXow9s+k/aWVO1foiLkMRERAREQEREBERBAeEE4t4C8SiACRpnJEAjcfQsnoPerut9DxfgD9Sg/CF94LiX+TOT/dZFd1voaL8AfqQcqIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIChZ/fOzX4nx/7a6rpQ+ZLMVxAktWXCGHJ4+CrBK87MdLDJO90e/cHFswcBvuQ12w8123s6NtqjfH5iWUdrKoiLexEREBERAREQEREBERAWDzv0x6N/Gzv3Oys4sLa5Mrq/T1Su4TTULL71kMO/Yx9hNE0u+AudIAAdieV5G/I5bKNV58J+0so2r1ERchiIiICIiAiIgIiINf+EL7wXEv8mcn+6yK7rfQ0X4A/UoTwhfeC4l/kzk/3WRXdb6Gi/AH6kHKiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAuC9QrZOpJVuV4rdaUbPhnYHsePgLT0K50ViZibwJd3C7Rr3FztKYVzidyTQi3J/+FfPar0Z8U8J/0+L+VVKLfpGN354yt53pb2q9GfFPCf8AT4v5U9qvRnxTwn/T4v5VUomkY3fnjJed6W9qvRnxTwn/AE+L+VPar0Z8U8J/0+L+VVKJpGN354yXne09meHWlo+NWkabNP4plKbA5iWWo2nEI5XssY0Me5u3UtD5ADsdu0d1G/W49qvRnxTwn/T4v5Vic65w48aMAdsw6dzZLfO6nxjF7H4Ph7+vXp6VfppGN354yXnelvar0Z8U8J/0+L+VPar0Z8U8J/0+L+VVKJpGN354yXnelvar0Z8U8J/0+L+VPar0Z8U8J/0+L+VVKJpGN354yXnelvar0Z8U8J/0+L+VZ3F4ehg6xr46lXoVy4vMVaJsbS4952AHU/Cu4iwqxcSuLVVTP7l5kREWpBERAREQEREBERBr/wAIX3guJf5M5P8AdZFd1voaL8AfqUJ4QvvBcS/yZyf7rIrut9DRfgD9SDlREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQa/zrSePWi3dnu0aczYMmx8355xfT4Ou3p6+b09K2AtfZ6Mnj5op/I4gaczg5x7kb2cX0P3Tt0+8VsFAREQEREBERAREQEREBERAREQEREGv/AAhfeC4l/kzk/wB1kV3W+hovwB+pQ3hAvMXAXiS8AEt01kiA5ocPoWTvB6H/ADVzW+hovwB+pByoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiINf51oPHnRbtm7jTubG55ub6Jxfd6Nvv9e7b0rYC/nvxc8JnjPpnwwamkMfpvTNjJwSWMVgzNVsubPSuy15GyykTjdzW1o93N5WgiTp3bf0DqtmbWiFh7JLAYBI+JhYxztupDSSQN/QSfvlByoiICIiAiIgIiICIiAiIgIiICIiDX/hC+8FxL/JnJ/usiu630PF+AP1KE8IX3guJf5M5P91kV3W+hovwB+pByoiICIiAiIgIiICIiAiIgIiICIiAiIgndV5u3Sno4zHcjL97ncLErS5kETOXnft9U7d7AASBu7c77bHCOxOded/ZllmHYbhlalt/lvXJ/1XPqj3xdOfivI/taaya6uHajDpmIjXF9cRPbMdvoy2MJ5Hzvx0zHq1H+nTyPnfjpmPVqP9Os2iy6zyx7aeSXYTyPnfjpmPVqP9OnkfO/HTMerUf6dZtE6zyx7aeRdhPI+d+OmY9Wo/06eR878dMx6tR/p1m0TrPLHtp5F2E8j5346Zj1aj/Tp5Hzvx0zHq1H+nWbROs8se2nkXYTyPnfjpmPVqP9OnkfO/HTMerUf6dZtE6zyx7aeRdhPI+d+OmY9Wo/06eR878dMx6tR/p1m0TrPLHtp5F2vcjwcq5bX2K1rbz2Sn1Ri60lOnkXQU+eKJ+/M0AQcp73bEgkcztttyqfyPnfjpmPVqP9Os2idZ5Y9tPIuwnkfO/HTMerUf6dPI+d+OmY9Wo/06zaJ1nlj208i7CeR878dMx6tR/p08j5346Zj1aj/TrNonWeWPbTyLsJ5Hzvx0zHq1H+nTyPnfjpmPVqP9Os2idZ5Y9tPIuwnkfO/HTMerUf6dPI+d+OmY9Wo/06zaJ1nlj208i7CeR878dMx6tR/p08j5346Zj1aj/TrNonWeWPbTyLsJ5Hzvx0zHq1H+nX1uIzjXAnWeXcAd9jXpbH/wDrrNInWeWPbTyLuDTmZvwZg4XKTC9I+B1mtdEYY6RrXNbI2Ro83mBewgt2BDvcjl3dVKFi98zB/irIftaaul4+kUxE01RG2L/Mx+CREReRED4QLgzgLxJcWCQDTWSJY7fZ3zrJ0O2x/Mrmt9DRfgD9ShvCBjdLwF4ksY0ve7TWSa1rRuSTVk2ACua30NF+AP1IOVERAREQEREBERAREQEREBERAREQEREETqj3xdOfivI/taayaxmqPfF05+K8j+1prJrqx9LD9P8AtKz2CmuHGv8AH8T9IVNR4qGzXo2ZbELI7jWtlBhnfC7cNc4bF0biOvcR3dy7Godd6d0jeoU83mqWInvMlfWF2YRNlEQaZNnO2HQOadt+77xXjvGaSq5bgFw1zt2bC5OtjDncn7E8/eNSHLV5LckgmicD0ljYWFji1zR2ve3fdapqtKPcKLyVh5NBcWtdZOzrtrKmloNIYjIaZx2atuhbWqSxSOsTt3f1la5rGmQEuHK3Y9ViuC+nouLmq9BRa+qSZ5knDwzmHJlxFgNyBZBNK3fZ7jE4OBcCd3c3f1UzD03xG4oYnhnToPvwXslkMlP4tj8Tiq/b3LkgaXObGzcDZrQXFziGgDqR0XU4dcX8TxFv5PFx0Mrp/PYwMfbwudq+L2o4378kgAc5r2HYjma4jcddl5r4YZ9unMlwJ1Hqa8RgYoNQadhyV+X5nVnFtzK4fI49C+KuYwSevLsuzx+ydXiDrLiff0zPFl6OE4Z3cfkrtF4li8YlnEscHM3cFzWRyPIHdv8AdKmbtHsVYXRusMVr7TNHUGEsG3irzS+vO6NzC9ocW78rgCOoPeFpLUWSwGtONnBzGMtUczWsaczPjNVkjZWvrzQVWjnaN/NeGvHXv2PwLTuBwGjcb4F2ENWvi6V65lcSzPPgc2KZ3Z5VrD27mkOBaC4bnbbqrm1j3Si8XcUsVgsHkeLWB4diu3Tj+Hdq5l8fiZO0qQ3hLtC/laS1krou2JA2Ja0Ej0nZWoslgNacbODmMZao5mtY05mfGarJGytfXmgqtHO0b+a8NeOvfsfgTMNhZ/jvpvC8JWcRa0d/N6fldCyuzHwDxicy2GwM5WSuZ3vcPdEdPzLtaD4o29b5eajPoLVulmRwGcXM9VrxQPIc0dm0xzyHnPNuBtts13Xu38oYnT2m6HgM1/IUdDGagu3cUzKT0Wx+MiZmWjY10o67uYSduYLcnHvSeZ0r4OGt25jV2S1c4mrYE+Rr14jXjZZic/YQRsBGwLiSD3KRVO0ehkXlbj5ncbmOJGrY6F+tdfDwjzz5G15WycgfJAWE7HpuASPhXCNOx8NtR8Lsloyka2dz2lcobpa90j8nPHShmhdMXEmR4l7nO3PnEb7K5h6vUrR4kYvNaAsavwkF7PY2OOxJFBj6znWbJhe9jmRRu5SXFzHAA7b9PhWmvB20jwtzOjdIZ91jH5nW+ZxxGQuXb5kvXLMkB8cilY5+7uXeUGMghob0A23WstO6H0O3wHtceL4jENzzaGTkvtjjYLAmrWbAgMgHnAx7jl37txt3pmke16s/jVWGbs5Ie0YH9nK3le3cb7OHoI9K5V5RuYfR2sOI2vIuKFqBtPC4HGS4OO9aMLatV9Zzp7Nccw+adsHAyDdw5GDcdxx3CrTreLmsuH0fEOi7NTTcNYrVitkC4tmk8bDWSys32e7kdzbuB2Lie/qmYev1qbV3hF43SWss5p1uktV5yXCV4LWRu4ajFYgrRzNc5hcO1Eh6Mfvsw+5K87HDQZfgvoLUeau4rU1fTVXNRyaU1Fk3V3XasNx8bZ4JN9+3iZExgc4EecBu07FV+lK+q+IvF7iBY0Bn6ekMXk9PadllkyeMdbtRwy1rBi7Mdq1rXtaXb83NuSPg6zNM7B6g0xqXG6y07js7hrTb2KyEDLNawwEB7HDcHY9QfuHqD0Kya8N8XdCadwuI1NpjF18Ji5OHOl68UWoM/anOQmldFJLEabI5Y2xv5v8AxOvM9wbykN2Ww8TpTEcXeOWmZtVVY89Wm4a0rklaweaCeV9lx53s7n7cziN9wCdx1AIubsHqFF5HrQ1OF/GDNSUocVrHUmpLOZkwmeoXjJkKdpkEkho2oOYgxs5DG0jo0tALGk7rE8BdAt1JHw61dU15pWrqGzNDcvSVq1gZnJPDC63UsPfdcJHbCQOHZbNLeZrWgAJmHs5F5/8AA+0Dg6PDahqltBkmobVnKQvyEu75WQ+UJh2TCfcs+ZtPKNhzbnvJXoBZRN4uMRF75mD/ABVkP2tNXShYvfMwf4qyH7Wmrpa+k/o9PzKz2CIi8SNf+EL7wXEv8mcn+6yK7rfQ0X4A/UoXwgwHcA+JQJDQdM5Pqe4fOsiuq30NF+AP1IOVERAREQEREBERAREQEREBERAREQEREETqj3xdOfivI/taayaxup2n2w9Ou6beTMg3v9Jlp/wKyS6sfSw/T/tKz2MTqTSGC1lTjp6gwuOzlSN4lZBkqkdiNrx3ODXggH7q62c4f6X1PVpVszpvEZatSAFWG9RimZX2AA7MOaQ3oB3bdwWfRYWRgtQaC0zq1tNuc07icy2md6wyFGKcQHp7jnaeXuHd8CyDcJjmZVuTbQqtyTa/ijbghaJhDzc3ZB+2/JzAHl3236ruogwz9F6ek0+/AuwWMdg3lxdjDTjNZxc8vcTFtyndxLj06kk965cFpXC6WxfkzDYehiMbuT4nQqsgh69/mNAHX7yyiIJzCcNtI6ZtQ2cPpbC4qzCZHRTUcfDC+MyACQtLWgjmDW823fyjfuUxxE4D6c1thLtKjjsXgbd/I079+7XxkbpLnYWWTlku3KX8/IW7uJ25t9j3HZSJaBhtPaL09pGjNTwWCxmFpzuL5a+OpxwRyOPQlzWAAn766uE4baR0zahs4fS2FxVmEyOimo4+GF8ZkAEhaWtBHMGt5tu/lG/cqNEsJs8NNIGXIS+xXCdpkZWT3X+Tod7UjHh7HyHl89zXgOBduQQCOqz9mtDdrS17ETJ68rDHJFK0Oa9pGxBB6EEehcqIJjHcLdF4iCaGjpHA0oZq0tOSOvjIY2vgl2MsTgGjdj+VvM09HbDcHZZf2O4rxjG2PJlPt8Yx0dGXxdnNVY5oa5sR23YC0AEN23AAWQRLDAUeH2lsZqCbO09NYipnJiTLk4KETLMhPeXShvMd/TuV+Tw60m6xl5zpjDGfMMdFkpDj4ua6x3umzHl3kB9IdvuqFEsMDntAaX1S+k/NabxGXdS+hXX6MU5r/wDL5mnl7h3bdyyQwuPGWGVFCsMmIPFRd7FvbCHm5uz59ubk5hvy77b9V3EQTF3hbovJVKdS3pHA2qtJ75KsE+MheyB73l73MaW7NLnEuJG25JJ6rNVMHjaGRuZCtj6te/cZGyzaiha2WdsYIjD3AbuDQ5waCenMdu9d1EsMJldD6czuYrZbJafxeQytVvJBetUo5Z4m9ejXuaXNHU9AfSubGaTweEsQT47DY+hPBVbRikq1WRujrtdzNhaWgERgkkMHQHrssqiDB47QmmsRnbOboaexVLNWt+3yNelFHYl3O555A0OdufhK/FHh/pfGagnz1PTeIqZycky5OChEyzIT380obzHf7pWfRLDp4nDY/AUGUcXRrY2lG5zmVqkLYo2lzi5xDWgAEuc5x+Ekn0ruIioxEXvmYP8AFWQ/a01dKGhG/EvCkbdMVf369f8Ai1FcrT0n9Hp+ZWewREXiRr/whfeC4l/kzk/3WRXdb6Gi/AH6lC+ECWjgLxJLwXM9jWS5g07EjxWTfY7Hb8yuq30NF+AP1IOVERAREQEREBERAREQEREBERAREQEREGI1Dp9ucjrvZO6neqvMle0xvNyEjZzXNPRzHDoWn7hBDg1wwBwGrwdhlMI4D0mhMN/u7dt0+9uVbL8SSshaHSPaxpIaC47DcnYD75JA/wA16KMeuiMsbPGIlbozyDrD7Z4P1Gb5ZPIOsPtng/UZvllla+s62UkgGIqWsxC66+lPZrNayGsWDz3udIW8zQfN3j5yXHbbo4j80qOo8iMdYyl6viXxPnNrH4s9vFM1wLYmmaRjXeaDzEtawl23oBDtmlYm6OEF2AyNfUeJjc+5nNP1wI3y7PpzcxawczyB2252HU7LGVrGucs+M4yLHS1J8eLsGQu0Za0DnuOzYXMdN2zH7ecd4tgNuu/QXmF0hicE2o6vVM1qrAa0d+5I6zb7Mu5nNdPIXSOBd1O7juVmU0rE3Rwguh2YHWRY3nyWCD9vODaUxAP3Pmq/XkHWH2zwfqM3yytkTSsTdHCC6J8g6w+2eD9Rm+WTyDrD7Z4P1Gb5ZWyJpWJujhBdE+QdYfbPB+ozfLL55B1gP/aeD9Rm+WVup/MTPzeV8hQ9vBFGyOzemfSEleaBznN8WD3+aXP5TzABxazffkMkbk0rE3Rwgul8FBq/PVDegyem5cZPyS0LlWKSdluBzGubKC2XlAcSeXYu3byu3G+wyXkHWH2zwfqM3yytGMbGxrGNDWNGwa0bAD4F+k0rE3RwguifIOsPtng/UZvlk8g6w+2eD9Rm+WVsiaVibo4QXa/yWH11Xq9pTs4G5MHs3hfWmj3YXAPIPanzg3mIB2BIAJaDzD7jqWpcxj616hndO3qNmNssFmtVlkjlY4btc1wmIcCOoI6FX6nWPOms5FW5Z5MblZi2tFWpN7KlMGPkk7R7O5smxcHPG3aEgv3kjamlYm6OEF2L8g6w+2eD9Rm+WWKzUOtsHHPclmxFnGQV3Syvp461Pa5g4dGQMeXSDlLj5pLvN2DXEhbLRNKxN0cILoaHD6ssRh8eVwT2nuIpTfLL9+QdYfbPB+ozfLLN2dLQtyEl/GS+R71m1DZvTVoWHx4Rt5OSUEdd2bN5xs4cjOuzQ1fmhqXlt08dmIo8Xl7bpxXriXtGWGxO6uY/YAksLX8h2cBzdCGkppWJujhBdhvIOsPtng/UZvlk8g6w+2eD9Rm+WVsiaVibo4QXRPkHWH2zwfqM3yyeQdYfbPB+ozfLK2RNKxN0cILonyDrD7Z4P1Gb5ZG4HV+43yWEI9IFGb5VWyJpWJujhBdgdPaakxliW9fttyGUlYIjNHF2UUbB15I2czuUE9SSSSdtzs1oGeRF5q66sSc1SCIiwGv/AAhfeC4l/kzk/wB1kV3W+hovwB+pQvhBkN4CcSiWhwGmckeU9x+dZOnRXVb6Gi/AH6kHKiIgIiICIiAiIgIiICIiAiIgIvjnNY0ucQ1oG5JOwAU3BrIZ6rDLpqqM1Xt0pbVTKdq1mPe4HljY6UbuIe7qHMY8coLvS0OClWAzGtsZivKcMUj8tk8dHFJYxOLAsXGCV3LETE07tDiDs52w2a4kgNJHDNpW1noJmZ7JTT1rVGOtYxlJxgriTvke2Ru03nHzdi/blG23Uk5+tUgpx9nBCyFnQcrGgDoA0fmAA+8Agwl5mpMnLkq1d9PB12SwipfBNqaaPoZt4iGtjP1LTzP9LiO4LkGi8VLaksXYXZaU3m5GE5J5sNqzNbysdA1+4i5QTtyAd5PeSTl7dptOu6Z4Ja3bcN7+/ZY72S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FByaiylnE4uWShUjyGTeCynRlstrixLsSGl7t+UbAucQHENa4hriNjy4fEQ4So6vDJPNzzSzvlszOlke+R5e4lzj3buIDRs1rQ1rQGtAE5WyMdzUE2SvVqs0df5ni3xw7zwsc1vbFzyehc4bbNA81g3J5thmvZLW+ty/mH8UGXRYj2S1vrcv5h/FPZLW+ty/mH8UGXRYj2S1vrcv5h/FPZLW+ty/mH8UGXXTzGKhzmKt4+w6ZkFqJ0L31pnwytDhtuyRhDmOHeHNIIIBBBC6nslrfW5fzD+K7lDIx5BrzG1zeUgHm2QdbT9+5cqysyFTxK5BNJEWduybtIw4iOXdoG3O0B2xaCCSNum5yimdRMi0/mK2oh5LpQkMqZa9dc6OTxUdoYQ146EtmkGwf0AlkIIPR1MgLr36EGUpWKdqMS1543RSMJI5muBBG46jcE9y7CIJ0zXdK83bmbJYcGtXriKN81qDfzHvmeXEyN35HF+3MN3l24G4oWuD2hzSHNI3BB6EL6pyxjnaTbNcxNceTGNs2rWJqQc0k8z3CQyRdQA8u7Qlu3nukLtwd+YKNF+YpGzRskYd2OAcDttuCv0gIiICIiAiIg1/4QvvBcS/yZyf7rIrut9DRfgD9ShfCCeY+AvEl4AJbprJEcwBH0LJ3g9Crqt9DRfgD9SDlREQEREBERAREQEREBEXWv5CvjIBLZmZC1z2xs53AF73HZrG797idgB3knZBzTTR14nyyvbFExpc97zs1oHUkn0BYM6guZK0YcPQMrK18Vbli+JKzGxhpdI+Hdh7Yg8rBts3cu87zCDxw4SXUsIsaggBrWIICcBYbHLDWlY/tOZzgDzyBwZ13LR2Y5e8udRoJ+jpCLt6NzL25c5k6Us8te1Ya1gh7UcpayNgDdgzzASC7lLt3EucTQIiAiIgmeJmSvYbh/qDIYun5QydSlLPVqH/x5WtLmM/8AU4Af5ryvw08IzT1Gzps6j4u4/UljUdQOdUEdOtDi5xGJHB7mlr4wd+za2TmcXenvXp3jHpqxrLhXqvAVLPiVrKY2elDYJIET5GFjXHbrsCQei8mw6Y4gwZThpcHB+vG3R8M1W1BXy9EMuh9YQtfDu4bNaWh2z9jsdhuUG1dU+ELh9L5nVOPdp/UWTGmOzfl7ePpxvgqxPgZMJS50jS5oY47hoLxyOPLtsTP5jjnkMBxfzFGHF5vVenG6doZOtVwFGOd0RklnD5iXFjiHNbHs3ck7Hlb3rsW+H2orVjjxKMbyjVFKKPFNM8fzw8YxsJb7rzdpAW7u2Hp7uqwWB09xA4catgzFDRDtRxyaQxOHfFHla1d0VqDti8O53dWDnALhv6OUO67BaW/CO03IzA+QcfmtXy5nHPy0EOCqCWSOq14Y6R7XvZts88vKN3cwI5Vy6g490cHqTP4aHSupszPgYYLGQmxlSGSOGOWMvafOla5xAB3a0F3Q7ArVOY4K6o09ws01gMfpN2Z1fSrXLNbVGHzEdB+Jv2J3zOaOctc+AOk2IHMHBvVm53Hbw2d11pzi5xPrYfSzNYZyXH4WOzaZehqQRWRUeOd7ZCCYy4uPmAnYbbdUH3iDxlOW4o4Srj+Llbh/o7I6WizNW7LXpObblfYc0AGywkHk2PKCNuXu71ZUNSaiwPEfhdp+TWD9VY3NY7LXbV99StH46GCu+u4dkwABoldsWbcwO53WF4TcB8hoHW+mo8jTr5PD4vREWHkvPLHsddFt0r2tY48+2ziQ7l226b79Fcaq0dlL/G3h1naVIOwuHoZWvbma9jRC6ZtcRNDCQ479m/3IIG3Xbog07g/CV1FnfBn1XlbMwxOv8PinXYbPYxltuDtCyO3GwtLCN2uY4bbB7T0ALVX8QOK2r9Oao4oV8M3yo7CaWp5LG47xdrw2w904keeUB7htG08u/wBT023UpnfBpz2qfBaxGnxF5G1/iaVqKBomjcJWSyPMlWR7SWFkjeQ9+zXtY7ccpWyhp3U+B4u661Xj8EMnFPp6hVx8T7ccLbdmJ87nx8xJLOkjPOc3br032KCM1BrjUmm/B21nrjD8U4dbyNoxTY6/DjakbacocBIOVjSDuHAckjeZu3XcnpntceEJgchqPh5i9Ea2w2Ts5LUsFTIVcdagtSPpmCcvBHnFo52xecNiDsN+vWA1pwf1vrzE8T8tT0RX0fY1BgocdHp+HIV5JMhcbP2htSuYRE0hhLAS7mI3326Bbe4r8Op81l+HNnA4esfJWqK+QvSQiKIxVm17DXO6kF3nPZ5o3PXu6FBrfLeEANM6o1dktV8QoNPM09mpKjNEw1qpnuU28nZyAyESudIHh/M1wa0bjboVtfUHHPT+JsaagxkF7Vsmo4rUuMOnmxWWWPFzGJB2hkawf8T3RIb5jgSDsDpPWvCfXkWluJGkMdoarnjqLNWMvS1KMjXiAbLMyURyskIkDmhnZgtBBG3cAtoxYLUmpeI3DHUlnSrtN1cXVy8V+m63XlNR0wgEI3jcQ7n7Nx8zfb07IMNrHj/LNT0Bl9OVssa93Us2HyuFbSjdeLooLHPWLHEhrhJGw7teBsN+bl3VAPCT0y3Tl7ITY7N1cpSyUGIm07PTDckLc5HYxiPn5Dzg7tdz8pAPndFA2OGet8PerZWlpvynLT4iZHUIqC9BE6alLXlYx7XOdsHEvGzTsd+/lHUZCTh/qHOs1/qfUvDyHMTanlx9ZukfKkLZoa1VrwJjY3Efbc0jnANcNgG7P3QXWV451sRHpiObSOqDlNQyWoqmIFSFtpjoBu/tA6UNaCBuHBxaR13AIK2FwX4i43iNisrPSr3cfax9w0r2OyUPZWakzWh3I9oJHVrmuBaSCCNivKza+u9Dak4QDLYq3qDMxZHPPo4ifJxSXIqTq/zKKSy8hkkjGd7i7r0HMvQ/g5aXz9CzrnU+p6EOHy2pspHbGKhnbP4pDFXjgia97fNc8iPmdy7jr3oNwXqVfJ0rFO1DHYq2I3RSwysD2PY4bFrmkEEEEggjYrEaLzDsphjDYyMGUymPldRyE9aF0LTYYBz/ADN3Vu+4dtuRs4bEjYrPKdgyBp69s46xl+18foNt08WanL2QhfyTyCYDZ4cZq45D1btuNw7ZoUSIiAiIgm8lCzSM0+XrMrVsU90lrLtEUr5DszpNG1m45t2+cOTdwPNzAs2dQwTx2YY5oZGyxSND2SMILXNI3BBHeCv2sFiRYxOas4x4yV2tYEl+G9ZLHxREvHNXDhs4cpcHNDt/NJAOzNgGdREQEREBERBr/wAIX3guJf5M5P8AdZFd1voaL8AfqUL4QT3R8BOJT2OLXN0zkiHA7EHxWTqrqt9DRfgD9SDlREQEREBERAREQEREBTNaxFnta3mOnoXIMGImsr+Ll1ipcfG8ukMjujd4JWNAb12kfudnAKmU9pu2bGf1ZGchUuCDIRRiCvFySVAald3Zyn6t55ucH+zIwehBQoiICIiAiIg62Rquu1HwtIaXbdT9/dYb2MzfXo/9VRIgnfYzN9ej/wBU9jM316P/AFVEiCd9jM316P8A1XTraBrU8hcv169OC9dDBZtRwhss/ICGc7gN3coJA332B6KuRBO+xmb69H/qnsZm+vR/6qiRBO+xmb69H/qsZp2hPnMWLhr2sfzTTM8XyERjlHJI5nNy9dmu5eZvwtc09N1aqe0Ax0ekceHjLh2zyRnXh1wbvcfmhH+n93ZB89jM316P/VPYzN9ej/1VEiCd9jM316P/AFT2MzfXo/8AVUSIJ32MzfXo/wDVPYzN9ej/ANVRIgkbOga12/SvWK9Oe7SLzVsywh0kHO3lfyOI3bzDodttx0Kz2Ixz8cyQPe1/MQfNWQRAU7qe/wCS8zpqZ+TmpV5rrqbqsdftGWnPieWNe7vj2cwEO7t/NPulRKd15eOL0+255SnxTILtR8k9ev27nR+Mx88RZ/Ze0lhcOrQ4u+pQUSIiAiIgLAazxr7eIF2tjvKuVxTzfx1Xxs1e0sNY5rW9oOjQ5r3sPMC3Z53Gyz6IOOvMyzBHMwhzJGh7SCCCCNx1HQ/5LkU3oWq3E4y1h46lGhXxdqStXrUZu0bHB0fEHA9WO5Ht8w93TbzSFSICIiAiIg1/4QvvBcS/yZyf7rIrut9DRfgD9ShPCEcW8A+JRBII0zkyCPR86yK7rfQ0X4A/Ug5UREBERARFLXeINWG1LDSxuSzAicWPmpQt7IOHQtD3uaHbHoeXcAgg9QQNlGHXiTamFtdUoo/2xJPitnf0df5ZPbEk+K2d/R1/llu0bF3fMcy0rBFH+2JJ8Vs7+jr/ACye2JJ8Vs7+jr/LJo2Lu+Y5lpUGoM9R0tgclmsnMa+Nx1aW5ambG6QsijYXvdytBc7ZoJ2aCT6AStG8MvC+4Va515cweF1pHmsjm7zDjKNXA3YntYK8TXNkkMADjzRyO53EANIBOzVs6xrwW4JIJ9JZuaGVpY+OSKu5rmkbEEGbqCF5c8GfwbIOA3GDWerpdO5S5Une6DT0TGwukq1nnmf2m8g2eBswEE7gO+HZNGxd3zHMtL2uij/bEk+K2d/R1/lk9sST4rZ39HX+WTRsXd8xzLSsEUf7YknxWzv6Ov8ALJ7YknxWzv6Ov8smjYu75jmWlYIo/wBsST4rZ39HX+WWYwOqamffLDHHPUtxAOkqW4+zlDT0DgO5zTsRzNJG4271hVgYlEZpjUWlmERFoQREQEREBERAU7w+Z2ej8c3/APGOjX/TAd7vu3f8X7vwfc2WA448bMNwC0SNU5+hlL+MFplWQYmBkskReHEPcHPaAzdvLvv3ub06rXngueFJo/jg6zpzSlLVcnkiqbE+R1BHEQeaTZrHStkcS88xIG3uWHr06h6EREQEREBERAREQFO8RLnk3QWobvlKxh21KE1l1+pB28tdrGF5eyP6sgNPm+nuVEsRrCY19JZuVt6XFuZRncL0EXayVyI3HtGs+qLe8N9JGyDLAhwBB3B6gr6uniLLbmJpWGTOsNlgZIJnM5C8FoPMW+jfv2XcQEREBERBOY6HxLXeZa2vjYYrlStZ7SF+1yeVpkjkMrPSxrGwBrvuuB7gqNTtyLsuIGJmEGMAmxtuJ88r9rxLZIHMZGPqotjIX/A4R/CVRICIiAiIggPCCY6XgLxJYxpe92mskA1o3JPisnQK6rfQ0X4A/UoTwhfeC4l/kzk/3WRXdb6Gi/AH6kHKiIgIiIMfqGxJVwGTnicWSx1ZXscO8EMJBUxpWJkGl8RHG3lYynC1oHoHIFR6q+ljMf4Ob/YVPaa+lzFf4SL/AGBdHB+jPr+F7GSREWSCIiAiIgIiICIiAsNdcYtb6Vc3o6SSzC4/CwwOeR/8UbD/AJLMrC5H6dNI/wCJsfu0i2Ufq9KvtKwvURFyEEREBERBxWrUNKvLYsTRwQRNL5JZXBrWNHeST0AWvcnx1wNWYx0KmRzQHTtqkTWRf5OlczmH3W7hQOvdaya5yckcbz5CrSFteEe5sOadu2d8I3HmjuA2d3npPL6/of8ARqJoivpG2ezd6l7K3iPxBw3E3Q2c0rl9L5GTH5Wq+tIe0gJYSPNeAX97XBrh91oWtfBMxlHwa+HEuFlwdvI5y9ZdZyF6B8IbIR0jY3d4PK1vw+lzlnUXR/0nofd+ZM3g2vW494sytbbwuWqRnvmDIpmt++GPL/zNKvsFqHG6moC5i7kV2uTyl8Z6td6WuHe1w3HQgELzNLZhhkijklZHJKS2NrnAF5232A9PTqu9hszd0vlBlMYQ20ABLETsyywf+G//AF2d3tJ3HTcHx9I/ouFVTM4E2q+C8S9OIsfp/OVdS4WnlKZJrWoxI0OGzm/C1w9DgdwR6CCsgvjaqZpmaatsAiIsQREQFj9QymDAZKQWn0SytK7xqOPtHQ7MPnhv1RHft6dlkF0s1L2GHvyCw6pyQSO8YaznMWzT5wb6SO/b07IOHTFoXtNYmy227ICapFILb4+zdPuwHnLPqS7ffb0b7LJrE6TtePaVw1nx1+S7alDJ47JD2LrG7Ae0LPqC7ffl9G+yyyAiIgIiIJ3Nxf8AbDTUwgxjiBZjM1p+1pgMYO1cencsHOPgaD6FRKd1BDz6n0tJ4vjZeSxP81tv2sRb139a49Lj3OH9jmPoVEgIiICIiDX/AIQg5uAfEsfDpnJ952/8rIrut9DRfgD9ShPCF94LiX+TOT/dZFd1voaL8AfqQcqIiAiIgxeqvpYzH+Dm/wBhU9pr6XMV/hIv9gVDqr6WMx/g5v8AYVPaa+lzFf4SL/YF0cH6M+v4XsZJeFdMaBwmhPBAo8WNPQeQtd4pkmQGVqyvYbZbdc0wztB5ZGPZ5ha4ekL3UvPGlfBUy1LTWF0lqbiA/P6HxVoW2YKpiGUhZc2YzMZYl7SRz2B535Ry77DfuWNUXR2c5xq15kYte57SmJwR0zoqaWtbq5UzeO5GWCFs1lsT2ODIeUP5WlzX8zgd9gshX4u6u4napvYzhxBg6uPxePo3LmQ1HHNJ2sluETxQxxxPby7RFpc8uOxeAGnZc2q/B8yeXu6urYTW0+ndM6vlM2axTMeyeRz3xtimdXnLh2JkYxodu1+x3I2XavcC8ng9UWM1w+1b7DTdo1qF+lPjGX4Jm12dnBIwOewskazzN9yCA3dp2T+4av4gZrJ8MdU8TtO13RQ5jX2MoW8SysT2bclO5uOsmPfqdnOry/e3JWGwWr8lqhnD7BXOSxluGmJyuWzMM4JY67RD6NQv2IJ5ndpL3jcDoV6J1Jwgoau1Vw+1FlrTrmV0hJNLHM+Jo8ZdJD2bi4DYN88MkGw2BbtsunX4GYmhn+JeZpTeL39cVo69l3ZbiuWQOi5mjcb7lxeR03P51MsjU2ttaa+1H4OmM1hqSnpKfFZU4S3JhW1bfMI5rEI37ZthuzueSGRo22byuaef3Sq9OZLWj/Cf1/A7O472MUMdi5paVirO9zIXi0R2J7YMjk5mkvdyEOHKOUcu5rM7wX8tcDcRw68sdj5PrYuv5S8V5u08Tlgk37PnG3P2G23MeXm9O3XmyXCvJt4ryazwmpG4uHIVa1LM4uxj22WXYoHvczkeXtMTuWV7SdnDYg7bhW0jUWmvCr1RqexiM1RwAvacyd2OKPE18BlTdjqvl5BYNwxeLOIaRIWDZuwIDyR12Nwr15rniFqvU77MeBoaXwWob+G5GQTOuW2Q7hjw7tOSMglm5LXc2ztgzoT+uHnBfUfDOejisRr2T2C0bD5a2CnxUb7EcTi53i/jRduYwXdPM5gABzbKs4b8Pva+j1Izx/x/yznbma37Hs+x7dwd2Xujzcu3uum/wBIie0V6wuR+nTSP+Jsfu0izSwuR+nTSP+Jsfu0i9FH6vSr/AIysL1ERchBERAU5xGvzYvQGo7VZ5jsRY+d0Tx9S/kPKf8jsVRrH6hxEeoMBksXK7lju1pKznbb7B7S3f/VbcKqmnEpqq2RMLG15mggZWgjhjHLHG0MaPgAGwWqOOHGx/DPIYPD0n4ytksr2knj2Zc8VKsTAN3PEfnOLidgB/mtrVxPGx0NtnZXYHOhsRn6mRp5XD724Ox9I2PpUPxG4Xzazy2FzmIzs2mtR4gyNrZCKBthpjkAD2PjcQHA7fD06r9K6R1lWHPVTr1cL6/hh262r63hM5nJaKktY+nhrucrZ+thpJIXymjZZNvyyRuOz277bdQdtu477Cnh40ZrSF3WeO1rSx0lzA4xmXimwpkbHYicS0M2kJLXc+w33269w265zN8KMtqjSWGxWa1W/JZChmIcq/IuoMZ2ojeXCIRtcA0ddgdzt91c2f4N09Tau1JlshddJSzeFbhpaTIuV0YDi7tBJzHr16Dl6EenuXiijpUa76/23TtjX227Rq1+X1rnuLXB3Jarq4WlWuPvWKVfGOldNE11XctmL/NJ2Lerem+69KrTmneBOexuptIZLLa8lztPTBmbSpy4yOJ3Zvi7PldI1+5IHL5xB35e4bkrcTnBjS5xDWgbkk7ABejolFdMVTXE3me219kR2eMDbPASzI7T2ZqudvFWybxEP7LXxRyEf/G95/wA1s5QnBjCS4jRTLM7HRT5SZ19zHDYta4NbHuPQezZHuD1B3HoV2vhOn1U19KxJp2XZztERF4EEREBdPMzeL4e9L27qvJBI7t2M53R7NJ5g30kd+3pXcXRzk/iuFyExsOqCOvI/xhjOcxbNJ5g36ojv29OyDr6StePaUwtkXZMkJqUMnjssXZPsbxtPaOZ9SXb7lvo32WWWK0pYNvS+HnN1+SMtOF5uyRdk6xuwHtCz6ku7+X0b7LKoCIiAiIgntQQdrqTS8nYY6Xs7Mx7S27aePevIN6436uO+zv7hcqFTuoaxm1LpWQUqVkRWpnGezJyzV960o5oR9U478pHoa5x9CokBERAREQQHhBBp4C8SQ8lrPY1kuYtG5A8Vk7huN1dVvoeL8AfqUJ4QvvBcS/yZyf7rIrut9DRfgD9SDlREQEREGL1V9LGY/wAHN/sKntNfS5iv8JF/sCrcjTbkcfZqPJayeJ0TiPQHAj/6rXlHUEWmKFXGZqOxTu1ImwucK0j4peUAc7HtaWkHbfbvG+xAIXR6PE14c0U65uyjXGpUIp72f4P7Kl9Vm/kT2f4P7Kl9Vm/kXo6nF7s8JMs7lCinvZ/g/sqX1Wb+RPZ/g/sqX1Wb+ROpxe7PCTLO5Qop72f4P7Kl9Vm/kXFFxJ05PJNHFkDJJA4MlYyvKTG4tDgHDl6Hlc07H0EH0p1OL3Z4SZZ3KZFPez/B/ZUvqs38iez/AAf2VL6rN/InU4vdnhJlncoUU97P8H9lS+qzfyJ7P8H9lS+qzfyJ1OL3Z4SZZ3KFYXI/TppH/E2P3aRcHs/wf2VL6rN/Iu1h436o1JjclBDNFjcaJXiexC6IzSvbyBrGuAJaGueS7u35QN+vLclWHE1VxaLTt8YmCImNq6REXFYiIiAiIg13xH4YnUMz8vhzFDl+UCaGTzY7bQNhuR7l4HQP2O4AaegaW6ayhnwEhizFK1iJAdj43EWsJ/uyDdjvvtcQvVKLu9E/q2L0amMOuM1MbOyeK6p2vI51NiGkg5SmCOhBnb/FfPZPh/tpT/Tt/ivXKLo/69T/AOL/ANv/AJS0PJ1XKV8hKIqJkyMx6iKjE6d5/wAmAlbK0Pwmt5SzHe1JVFWgwh8eMkIdJOQdwZdiQGenk6l3c7YAtdudF4+kf1rFxacmFTlv23vP7bF1RsERF86giIgIiICxOrbzMXpXM3JbrsbHXpTTOusi7V1cNjJMgZ9UW7b7enbZZZTvEPIHGaHzc7MnNhZjVfFDka9bxmStK8ckcjYu55a5zSGnoduvRBlMGXHC48vsvuv8Xj3syM5HSnlHnlvoJ79vRuu8vg6BfUBERAREQTmoqom1NpSXxKlYMNqZwnsTcktfetKOaFv1bjvykehrnH0KjU5qOBsmptKPMGOlMduciS3Lyzxb1pRvXb9U477OHoYXH0KjQEREBERBr/whDy8A+JRG240zkz1G/wD5WRXdb6Gi/AH6lCeEIObgHxKA23OmcmOp2/8AKyK7rfQ0X4A/Ug5UREBERAREQEREBERAWveG4a3X/FcDfmOerOO/4poD/wCi2Ete6M+c+LvEamQGunbjcmBuNy2SF8AO3f31HDc/AfgQbCREQEREBERAREQEREBERAREQEREBERAREQEREBERAU9q649smDx8GRsY21fyUTWPr1u2MjYt55Y3HujY+OF7C893OAPOc1UKn6L5cpq27ZD8nWrY2M0RXmi7KrZe8RymZm/WTlHKwO9yCZANzvsFAiIgIiICIiCd1FD2mpdKv8AFsbN2dqY9rcftPF87SjeuPS877O/uF5VEpzUUPaam0q/xbHTdnamPa25OWeLetKN64+qcd9nD+wXH0KjQEREBERBr/whfeC4l/kzk/3WRXdb6Gi/AH6lDeECWjgLxJLwXM9jWS5g07EjxWTfY7Hb8yua30NF+AP1IOVERAREQEREBERAREQFr3Uzm6W4r6dz0m7KGZquwFqXm2ayfn7aoXdOgJ8YjBO3nSsHe4LYSxWqdNUdY6evYbIte6pbj5HOidySRncFr2OHVr2uAc1w6hzQR3IMqij9JapuRZE6Y1K+OPUcEZkhsMZyQ5SuCB4xD6OYbtEkXfG4jvY+N77BAREQEREBERAREQEREBERAREQEREBERAREQEXUv5Wli3Vm3LcFR1qZteATSBhllO5DG7nznHY9B16FYaG9lNUw15KcUuFxc7LMc8lyEx3wfcRPiYdwzfq/eQEgBoLPOPKHbyGZkmvSYzFGvYyMRhdba+bkNWGQuAk9y7mdsx/K3bqQNy0dV3MNia+BxNTHVe1NerE2Jjp5nzSOAG275Hkue495c4kkkkkkr943GwYmlDVg7QsjY1nPNK6WV/K0NDnyPJc92zRu5xJO3UldpAREQEREBERBOaih7TU2lX9hjZeztTHtLj9rEfztKN649Lzvs7+4XlUandRRc+pdKu7DGSclqY9pdftYj+dpRvWHpee539wvVEgIiICIiDX/hCAngFxLAG5Omcn0/8AdZFd1voaL8AfqUJ4QvvBcS/yZyf7rIrut9DRfgD9SDlREQEREBERAREQEREBERBidTaXoatxop32PHI8TQWIHmOetKAQ2WJ46seASNx6CQdwSDM0tW5HRNqHF60nikqyObFT1O1ghgsOc4NZFZbvtDOSQ0EbRyO9zyOcIheLhu0q+Rpz1LcEVqrPG6KaCZgeyRjhs5rmnoQQSCD3oOZF/Pnw1PCayvAqe1ww0HmMiJSa9qxbsCRsmGbzMmZWrWA5rpGvAaSH84Yx7mBxDgyH2PwH4rU+NfCfTur6hYH3q48ahaf+DYb5srNvRs4Hbf0EH0oL9ERAREQEREBERAREQEREBFxzzx1YJJppGQwxtL3ySODWtaBuSSe4AelT511RuMd5Fhs6hkfjjkqzsfHzVrUe/KxrLTtoC5x7mmTfYcx2b1QUi4rNqGlXknsSsggjaXPllcGtaPhJPQBYCxX1LmGTsFqvp+vPSYI312Cxbr2Sd3nd4MRDR0G7Xbnqeg2PM7ROKtTXZchFJlzcZAyePJSungd2RBYWwuPZsPMOYljRu7YnuGwfi9rOvFJk62No3c5kcfJBHPTpRBpBl2LdpJSyM7NPM7Z5LRt03LQfs9XUWUlsMdcrYSvHdjdBJT+eJp6zermv7RgbG556dA7Zvcdzu2gRBisZpnH4qaeaKOSaea1JcMtud9h7JHgB3IZC4sbygNDG7NAGwACyqIgIiICIiAiIgIiIJ3UUXPqXSruwxknJamPaXX7WI/naUb1h6Xnud/cL1RKd1FFz6l0q7sMZJyWpj2l1+1iP52lG9Yel57nf3C9USAiIgIiINf8AhC+8FxL/ACZyf7rIrut9DRfgD9ShPCF94LiX+TOT/dZFd1voaL8AfqQcqIiAiIgIiICIiAiIgIiIMNrHNS6d0vk8lAxklivC50TJN+Uv7m823Xbcjf7ilXaHxls9rkRPk7juslmzO8ue70kAHZo/utAA7gFmeKP0g5j/AJbf97Vzrp4EzRhZqZtMzP2jmy2RqS9vhhpa/EYrWGgsxn6iYucPzErjx3CnSWIhdDQwValC53OY6/NG0u6DfYEdeg6/cVYi3dfi96eMmad6d9r7T/2ub+lf/Mntfaf+1zf0r/5lRInX4venjJmnenfa+0/9rm/pX/zJ7X2n/tc39K/+ZUSJ1+L3p4yZp3p32vtP/a5v6V/8ye19p/7XN/Sv/mVEidfi96eMmad6d9r7T/2ub+lf/Mntfaf+1zf0r/5lRInX4venjJmnenfa+0/9rm/pX/zLoZvVmH4LivlMplG4rS0vastuuzPfHXc2KSVr2bkkE9m5nI3fmLmBo36GxUhr7TGJ1lf0nh85jq+VxVnKPE1S1GHxybUrLhuD8Dmgj7oCuerEiqmubxadvhEyRMztaL8HTw8fb08IPOaVbh31NPXKwOABfG2dphLzK+YEjmdIxwdytJ5BCAA7dz16lo+ybIyUJ7fiGFr9nN43RiDrUxeSREWTnka3ZuznAxu6nYHZu7onSPgrcKtBa0p6s07o6piM/T7TsLVWaZoZzxujd8z5+Q7te4dW+n4QFtdcVinsfojH1n1J7j7GZv16jqXjuSk7R8kbju/maAI93HvLWDoAO4AKga1rGhrQGtA2AA2AC+ogIiICIiAiIgIiICIiAiIgIiIJ3UUXPqXSruwxknJamPaXX7WI/naUb1h6Xnud/cL1RKd1FFz6l0q7sMZJyWpj2l1+1iP52lG9Yel57nf3C9USAiIgIiINf+EL7wXEv8mcn+6yK7rfQ0X4A/UoTwhfeC4l/kzk/wB1kV3W+hovwB+pByoiICIiAiIgIiICIiAiIgleKP0g5j/lt/3tXOuDij9IOY/5bf8Ae1c66WF9CPWftDLsYnVmpqOitL5fP5OQxY7F1JblhzRuRHG0udsPSdh0HpK1zw11FxZ1lJhtQZbH6WwulckwWfJXzzJk68D2F0fNJuIzJ1ZzN5ABueu42Vfxb0S/iRww1TpeKZtefLY6epFK/wByyRzCGE/cDtt/uKE4ZcYM7PT07pjM8N9WY/UULIqWRnNFoxsJY3lfO20Xcj4ztuA0l3XbYrGdrFjM54UFTTmjtRakIhzdOpqiHAVYKWPvQywh3Yc4sNkh37Roke8co5H/ADNrTzO2Wws1xt0dp3C4nKZHJWKsOWDjSrPxto3Jg33RFUR9sA3puSwAbjfvC0nqbRWo59AcYDWwOQs2fbArZqrUZXcJbtaE46R7oA7btNxFIBt3lhA69F++IdabUPFPAcQ7On9fO0ncwMmIdDgW3qOToWWWnSB81eFzJjFI07dxALGEgdCsbyLPX/GzLZK7w4rcM8lp25Dq2zdhGSzEM00EQr13ykcsckbmu3jc0h3UHoQNiqqnrfJ8OtHXM1xUz2nIY22GxwWMHVsRxuDtg2MRvfI+SQu32DO8ejoVojiDw805Qi4VXTw61XmtIvy+VyeZxF2hZy14STVnsbJYYXSOBdKI3+c77p67qhz0teWlw11HpPh7qOtpTRWbn8a0y/By1LQZLWkY2zBWeAZBHJLzeaCdy7bqDsvIyVrwqa8+J4pZWndx9TE6elp1sVfv4u+WiSWuHv8AG4o2mVrWv5huGN2AG/wm2h4941vGy5w6s0rjLNejVmbcho2pI5J5nP3YS2IsYwNa09q53KS4t3BY4LTGs8bndc6M8JK/R0pqGv5er0BjKl3FyxWbfJUjY7s4iOZ3nNPQdR6QD0W0MhPf0Z4S0+XsYDMZDD5/AUcZBfxlF9mKvYiszF7ZywHsm8szXczthsHddxskTIq3cetBM1f7GTqGLyt42MeQIJTXFo91c2OTshL6Oz5+bfptuu1ieMmkc7rCzpbH5SS5nKtqSlYrRUrBEErGGRwkk7PkYC0Hlc5wa4ghpJBC86zac1Izg3PwZZpDNu1NJn3PGdNI+TTCcl42Lxte53Ee3mb8/MNuVbp4EYG5hcnxSmu46ei6/rK3ZgksQuj8YhMFcNkYSBzM3DgHDcbg/dViZkbWWEzP01aK/Gkv7hbWbWEzP01aK/Gkv7hbXoo/V6Vf8ZWF8iIuQgiIgIiICIiAiIgIiICIiAiIgIiIJ3UUXPqXSruwxknJamPaXX7WI/naUb1h6Xnud/cL1RKd1DF2mptKu7DGS8lqY9pcftYj+d5BvXHped9nf3C9USAiIgIiINf+EL7wXEv8mcn+6yK7rfQ0X4A/Uofj+XjgPxI7NvPJ7Gslyt5ebc+KybDY9/3lc1xtXi/BH6kHIiIgIiICIiAiIgIiICIiCV4o/SDmP+W3/e1c64uJ7HP0Bmy0E8lcyO2G/mtIc4/mBXI1we0OaQ5pG4IO4IXSwvox6z9oZdj6iIqxEREBERAREQEREBYTM/TVor8aS/uFtZtYXKN7bV+jo2dXx3prDm+kMFOdhd97mkYP/UFso/V6VfaVheoiLkIIiICIiAiIgIiICIiAiIgIiICIiCd1DD2mptKv7DGS9nZnd2lx+1iP53kG9celx32d/cLlRKdz8Pa6q0u7xbHTdnNYd2tqTaxF8wcN4B9UTvs74GkqiQEREBERBrzwiuvg/wDEpnMGl+msjGCfQXVpAP1rYQGwAHcFrzwhNn8GtT1u83IGUQPhM0rIgPzvC2IgIiICIiAiIgIiICIiAiIg+EbhScvDem15FLJ5XFwb7trVLI7Jn3Gtc13KPgaNgO4ABVqLbRi14f8AhNlibI/2uR8Y876xH8mntcj4x531iP5NWCLbpWLv+IW8o/2uR8Y876xH8mntcj4x531iP5NWCJpWLv8AiC8o/wBrkfGPO+sR/JqU0LgLmosnrGC3qLLiPE5p1Ct2U8YPZCtXk87zD53NK/4Om3RbbWvdA8uL4lcScS/pLYu083G0jb5jNUjr7jr1+aUpk0rF3/EF5ZL2uR8Y876xH8mntcj4x531iP5NWCJpWLv+ILyj/a5HxjzvrEfyae1yPjHnfWI/k1YImlYu/wCILyj/AGuR8Y876xH8msxg9LU8DLLPG+e1blaGPtW5TJIWgkhoJ6NbuSdgAFmEWFWPiVxlmdSXkREWhBERAREQEREBERAREQEREBERAREQT2ZhdLrDTjvFMdM2Jlp5nsP2swnka0diPSDzEOPoG3wqhU7erOn4gYeXxbHSR18dc3sSP+fInPkrhrY2/W3Br+c/CyMDvKokBERAREQa940NfexOmcQxvMcnqTGRu83fzIbDbb/zsrOH+a2Etd5f/tJxwwFJnn1tM42fK2PgZZsk163+fZNvb/fb8K2IgIiICIiAiIgIiICIiAiIgIiICIiAiIgKH15jLmJzOM1liq0ty1jY5K+RpV4+ea5QeOZzYx3mSORrJGgblwEjAN5ARcIg6mJy1PPYyrkcfZjuUbUbZYZ4nbtewjcEFdtQ2U0ZlcBkrOZ0ZYggmsyOnuYG84to3pD1dI17WudXlJ6l7Wua7dxfG5x5hyYPirir2Sgw+Zhn0rqKZ3JHisxyxuncPseQExzj0/M3Ege6DTuAFqiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIi/E00deF8sr2xRRtLnvedmtA6kknuCDA1arbGvcjcMOOeK2PgqssRyF1xrnPkfJHI3ubHsIHN9LiXb9AN6FTmia5kpXctJHizPl7T7gs4nmcyxB0ZWkc93V7zXZDuR0B3DdwATRoCIiAulmszS07h7uVyVllPH0oX2LFiT3McbQXOcfvAFd1a+iaOLGWrW3McNF4ywyxVLj5uZssPMyYN2+honBro3f+LI0PAEbI3zB2uFWGuw4m9qHMVX0s7qSx5StVZfd1GcjWQVj8Do4WRtdt0MnauHulboiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLH53AYzVGLnxuYx1XK46cbS1LsLZonj7rXAgrIIg14eGeX0yXSaL1XbxkXeMTmw7J0PvN53ieP4AGShjd/cHYBDxE1JploGrNF3BECQ7J6Xc7K1wPhdCGtsgn+y2KQDYjmPQnYaIJ7SvELTWt+2bgs3SyU0AHb1oZR28Hd0liOz4z1HRwB6hUKnNWcOtMa5MLs9gqOTng/4FqaEeMVz8MUo2fGep6tIPUrADhvn8A9z9L65ydeIb8uO1C3yrVB9HnvLbP8A88j7iDYSLXfs11tpsbah0QcpXb0N/Slxtkbf2n15uykb+DH2x7vu7ZTTnFzSOqMg3HU81FBlz/7JyLH0rw/93mayT/PlQWCIiAiIgIiICIiAiIgIiICIiAsDmHTZq/5HrulrRR9lPelmo9pBPA4uBrte/Zpc/lIdsH8rN9w0vY5aP4TeGdp7jTr3PaHw8MGK1HRyMkFMZC1vFkKcbiJLEJDPOla1rndh8Gzg8tDyz0Dh8RWwWOho1BIIIgdjNK+WRxJ3LnPeS5ziSSXOJJJ6lB3AA0AAAAdAAvqL45wY0ucQ1oG5J7gg+rGai1Li9JYqXJZi9DjqMZDTNO7YFxOzWNHe5ziQGtG5cSAASdlKTcTZtSTup6FxzdSPbIYpsvLKYcXWIOzvmwBMzh18yFrhuC1z4+8d3T3DxtTJQ5vUOQfqbUcXMYrk8Qjgp8w2c2rACRCCOnNu6Qg7OkcEGN8lZLis0nP0JsNo9xBZhLHm2cm3/wDeNH/Dhd0Pi+/M8bCXYF8K2E1oa0NaAABsAPQvqICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLFaj0rhdYY91DO4ijmqTuprZCsyePf4eVwIWVRBrxvB9uCPPpLU+c0xsDtT8aN+j9wdhZ5+zaO/lhdH3fdO/wA8s8SNMtHlHA4vWdZp62NPz+I2iPuVrLzGfWB974NiIgg6nG3SZtsp5a5PpW+9/Ztq6jrSY8yP67NjfKBHMeh/4TnjofgKyuueJml+GtDGXtT5mvhqOSvRY6tasb9k6eQOcxpeAQwEMceZxDRt1IVBdo1slUlq268VqtK3lkhnYHsePgLT0IXjnww/A1zfFOPSmL4Y1KGAw7JrNnLVHXH1qIl2jbBI2s3dnOA6wOZrAdnHc9UHrLUeo3Yd1epUri7lLIcYa7n8jA1u3M979jytHM0dASSQAO/bB+W9Yn/yeDH3PGJj/wD4Wm/Bx4aa/wCEniemde6ko6lfSxjmY2Wp2j3V6/asHYuke1pcAR5vToOm+waBvhdOiiiiin+2JmYvrZbGL8t6x+xMH+nm/kTy3rH7Ewf6eb+RZRFlejuR/P3L+DF+W9Y/YmD/AE838ieW9Y/YmD/TzfyLKIl6O5H8/cv4MX5b1j9iYP8ATzfyJ5b1j9iYP9PN/IsoiXo7kfz9y/gxflvWP2Jg/wBPN/Iuplr+t8hirtWu3CU7E8L447LZZnGJxaQHgco32J3239Cz6JejuR/P3L+DyDwq/wDs/wDT/D/JxZXM06GtspHIJW+V7Mgqh4duD2LYwHde8PLgfgXqry3rH7Ewf6eb+RZREvR3I/n7l/Bi/LesfsTB/p5v5FE5XT2ZzF6bIcQzDqHTsRLzhcdK+OlAwfVyVuTe306ubLI5vm7siDui2UurlgDirgI3Bhf0P4JViMOqbTRHzzL+CoqthbVhFYRiuGARCLbkDdunLt0227tlyrBaEcXaH084ncnHVyT/APxNWdXMrpyVTTuSRERYIIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCIzPvk1/wAUv/bNWUWLzPvk1/xS/wDbNWUXVn/Cj0WWA1vr3T/DjBPzGpcpBicc17YhLNuS97vcsY1oLnuPXZrQSdj0XX0FxK07xOx1m9py7Jdr1pvF5u2qTVnxycodylkrGuHRwPd6QtacUXVz4TnB9mYLRjPFcq6gJf8AhnIckXJv6OfszJy79d99uqznhFaoyeE0hiqOGyb8RYzOex2Fs5KuW9tRgsTBj5G77hriPNa4joXb+har7UbWReQOMeYz3CtvEXSOF1dqC3RGmaWar27uSknu42w7ICBzWWCecNkZ15XE7crttgSFY6q0xl8BxPq6DwWtNRSVtXabyb5jdy008+Msw9kILcUpPPGC6VzS1pDTy9AmYegc5mqenMLkMtkZvF8fQryWrM3K53ZxMaXPds0EnYAnYAn4FBaM8IzQXEHN0cTgslkLdy81zq/a4S9BE8BheT2skDWAcrSRu4b9ANyQtG3eJmX40aSzMptWaUWl9A5I6ipQyuZG/MSxy1zBKwHZwj8WsPAI6dow/AtjcLslrzRvAdmezN7CZijQ0nHcxlHHY+WCYGOqHsZK90zw/cAA8rW9ev3FM151Db2e1didM3cNUyVvxaxmLniFFnZvf20/Zvk5N2ghvmxvO7th079yF1K3EXTdqK9KMtBFHSygwszrAdCBdJY0Qt5wOdxMjAOXcEnoSvNVXS9sTeD9rDI6wzmpcpns1Dcti5eL6QfNj7Eu8MG3JEG9WtDNuhO+57sNqXDy5rh7ex2Sz2fuQYvi5WxtexYzNl08dfxmuwN7Uv5vNDiWnfzXecNj1UzSPaKLQ2oMLcz/ABmw3Db2S6hxOmsbpc5YPo5aaO9fnNnsR2trmMr2xtAJHN1MjebfYBa70zqDU3EHUXDTTdzV+bZQjy+p8TayOPuOry5etTc1sD3vZt52wALxs73RBBO6yzD16urlf+67n/Jf/tKYvHsxOMp0Y5Z5460LIWy2pnTSvDWgBz5HEue47blxJJO5KZX/ALruf8l/+0rbTtgd/QX0i6c/Ftb9k1Z5YHQX0i6c/Ftb9k1Z5eDG+pV6ys7RERaUEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBEZn3ya/4pf+2asosXmffJr/AIpf+2asourP+FHosp7XXD3TvEvBnD6mxUGWx/aNmbHLu10cjfcvY9pDmOG585pB6nr1WBxHAXQOE0tmNO1tOQPxOYLTkI7UsliS0W+4L5ZHOkJbsC083mnqNir9FhaEaW154NmFscJdXaW0bQrY7JagbAJ7mTtzzum7ORjgJZnmSQtDWuDR1A36AblVmmODum+Gxy+S0hhYYdQW6xibayNyecv5QTHE6WRz3si5tt2s6DvA3AV6ilo2jV/DXgxDp7SWraWpG0r+S1jdtXs4Me18UDzO3kdFGSeflDOnNuCSXO6Erm0Z4OeguH+Yp5PB4y/WtVGOjhE2avWImtcwsI7KWZzCOVxA3advRsQFspEtA1ngvBs4caZzePyuL074nbx9p12mGXrPY1pXNc1xjiMnZsBD3bta0N7unQbZu7wg0hktPZ/B2sNHPis9efkshXkmkPa2XFrjKHc3Mx27GEchbsWgjZWKJaBr7LcBND5zCYjFXcRPNXxHailP5StNtQiQ7yDxkSiUhx7wXkHYfAFlsXwr0phJdMvx+GhpexqKeDFMruexlZkzQJQGg7OLgBuXAnfc95JVWitoBdXK/wDddz/kv/2ldpdXK/8Addz/AJL/APaVnT/lA7+gvpF05+La37JqzywOgvpF05+La37Jqzy8GN9Sr1lZ2iIi0oIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCb1Pg7c96rl8YyOa9WifA+tNIY2zxOLSQHbHZ4LQWkjY7uB25uZuG8p6gH/wCT8gfvW6m37VXqL10dImmmKZpibb7/AImFugvKmoPidkfW6nyyeVNQfE7I+t1Plleos9K8kfPMv4ILypqD4nZH1up8snlTUHxOyPrdT5ZXqJpXkj55l/BBeVNQfE7I+t1Plk8qag+J2R9bqfLK9RNK8kfPMv4ILypqD4nZH1up8snlTUHxOyPrdT5ZXqJpXkj55l/BBeVNQfE7I+t1Plk8qag+J2R9bqfLK9RNK8kfPMv4ILypqD4nZH1up8svkkGodQQSUfIsmFinaY5LdqxE8xtI2JY2Nzt3bb7bkAHqd9tjfImlT2URHHmX8HBSpxY+lXqwN5YYI2xMBO+zWjYf6Bc6IvFM3m8oIiKAiIgIiICIiD//2Q==",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import Image, display\n",
"\n",
"try:\n",
" display(Image(chain_linkedin.get_graph(xray=True).draw_mermaid_png()))\n",
"except:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"def enter_chain(message: str, members: List[str]):\n",
" results = {\n",
" \"messages\": [HumanMessage(content=message)],\n",
" \"team_members\": \", \".join(members),\n",
" }\n",
" return results\n",
"\n",
"authoring_chain = (\n",
" functools.partial(enter_chain, members=authoring_graph.nodes)\n",
" | authoring_graph.compile()\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## sample run"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2024-10-10 14:31:41 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"{'supervisor': {'next': 'DocWriter'}}\n",
"---\n",
"2024-10-10 14:31:42 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:31:43 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:31:47 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:31:48 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:31:50 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:31:53 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:31:55 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:32:25 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"{'DocWriter': {'messages': [HumanMessage(content='The detailed summaries of the two papers have been successfully written and saved to the document named \"paper_summaries.txt\".', name='DocWriter')]}}\n",
"---\n",
"2024-10-10 14:32:27 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:32:28 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"{'CiteEditor': {'messages': [HumanMessage(content='The detailed summaries of the two papers are as follows:\\n\\n**Paper 1: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi**\\n\\nThe study investigates the role of tele-mental health (TMH) services during the COVID-19 pandemic in Mississippi, revealing significant disparities in access and the impact on healthcare utilization and expenses. A cohort of 6,787 adult patients insured by the University of Mississippi Medical Center was analyzed, with 3,065 utilizing TMH services from January 2020 to June 2023. The TMH users predominantly included younger, female, White/Caucasian individuals, particularly from rural areas with higher income levels[1].\\n\\nFindings indicated a substantial increase in mental health-related outpatient visits (190%) and related medical expenditures (17%) due to TMH utilization. Conversely, there was a notable decrease in all-cause medical expenditures by 12%, suggesting cost-effectiveness in managing mental health needs remotely. Rural residents experienced even greater benefits, with a 205% increase in outpatient visits and a 19% reduction in overall medical costs. The study highlights the necessity of addressing sociodemographic disparities to enhance access to TMH and reduce healthcare costs comprehensively[1].\\n\\n**Paper 2: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients—Insights from National Inpatient Sample 2020**\\n\\nThis research explores the exacerbated outcomes of sickle cell crisis (SCC) in patients also diagnosed with COVID-19. Utilizing the National Inpatient Sample data from 2020, the study reveals that SCC patients co-infected with COVID-19 experienced significantly higher mortality rates (2.28% vs. 0.33%), more complications such as acute respiratory failure and acute kidney injury, longer hospital stays, and increased hospital charges[2]. The findings underscore the critical need for enhanced medical care for SCC patients with COVID-19 and the importance of preventive strategies to protect this vulnerable group from severe outcomes[2].\\n\\n### Citation List\\n\\n[1] \"Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\"\\n\\n[2] \"Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients—Insights from National Inpatient Sample 2020.\"', name='CiteEditor')]}}\n",
"---\n",
"2024-10-10 14:32:44 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"2024-10-10 14:33:00 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"{'CopyEditor': {'messages': [HumanMessage(content='The detailed summaries of the two papers have been successfully written and saved to the document named \"paper_summaries.txt\".', name='CopyEditor')]}}\n",
"---\n",
"2024-10-10 14:33:02 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
"{'supervisor': {'next': 'FINISH'}}\n",
"---\n"
]
}
],
"source": [
"for s in authoring_chain.stream(\n",
" \"\"\"Write an detailed summary about: \n",
" Paper 1: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
" Paper 2: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\n",
" make sure to include citations numbers inside the text you created and at the end of the paragraph, create a citation list. At lst, write it to disk.\"\"\",\n",
" {\"recursion_limit\": 10},\n",
"):\n",
" if \"__end__\" not in s:\n",
" print(s)\n",
" print(\"---\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "llmops-course",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|