File size: 72,780 Bytes
312981b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import getpass\n",
    "\n",
    "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "#some funtions for easy print\n",
    "from IPython.display import display, Markdown\n",
    "from typing import Any\n",
    "\n",
    "#def pretty_print(message: str) -> str:\n",
    "#    display(Markdown(message))\n",
    "def pretty_print(message: str) -> None:\n",
    "    display(Markdown(f\"```markdown\\n{message}\\n```\"))\n",
    "\n",
    "def format_output(data: Any, indent=0) -> str:\n",
    "    spacing = ' ' * indent\n",
    "    if isinstance(data, dict):\n",
    "        result = []\n",
    "        for key, value in data.items():\n",
    "            result.append(f\"{spacing}{key}: {format_output(value, indent + 4)}\")\n",
    "        return \"\\n\".join(result)\n",
    "    elif isinstance(data, list):\n",
    "        result = []\n",
    "        for item in data:\n",
    "            result.append(format_output(item, indent + 4))\n",
    "        return \"\\n\".join(result)\n",
    "    elif isinstance(data, BaseMessage):\n",
    "        return f\"{spacing}{type(data).__name__}(content='{data.content}', name='{data.name}')\"\n",
    "    else:\n",
    "        return f\"{spacing}{str(data)}\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "Title: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
    "PMID: 39063396\n",
    "\n",
    "Title: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\n",
    "PMID: 39051414"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-10-09 14:25:35 - Loaded .env file\n"
     ]
    }
   ],
   "source": [
    "from langchain_openai import OpenAIEmbeddings\n",
    "import os\n",
    "from typing import List\n",
    "from langchain_community.document_loaders import PyMuPDFLoader\n",
    "import uuid\n",
    "\n",
    "from langchain_openai import OpenAIEmbeddings\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain.chains import (\n",
    "    ConversationalRetrievalChain,\n",
    ")\n",
    "from langchain.document_loaders import PyPDFLoader\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.prompts.chat import (\n",
    "    ChatPromptTemplate,\n",
    "    SystemMessagePromptTemplate,\n",
    "    HumanMessagePromptTemplate,\n",
    ")\n",
    "from langchain.docstore.document import Document\n",
    "from langchain.memory import ChatMessageHistory, ConversationBufferMemory\n",
    "from chainlit.types import AskFileResponse\n",
    "\n",
    "import chainlit as cl\n",
    "from langchain_qdrant import QdrantVectorStore\n",
    "from qdrant_client import QdrantClient\n",
    "from qdrant_client.http.models import Distance, VectorParams\n",
    "from langchain_huggingface import HuggingFaceEmbeddings"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# set up basic RAG chain (will use it as a tool later). The RAG chain contains the information about 2 papers.\n",
    "Title: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
    "PMID: 39063396\n",
    "\n",
    "Title: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\n",
    "PMID: 39051414\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "107\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Document(metadata={'source': 'https://www.mdpi.com/1660-4601/21/7/819/pdf', 'file_path': 'https://www.mdpi.com/1660-4601/21/7/819/pdf', 'page': 0, 'total_pages': 11, 'format': 'PDF 1.7', 'title': 'Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi', 'author': 'Yunxi Zhang, Lincy S. Lal, Yueh-Yun Lin, J. Michael Swint, Ying Zhang, Richard L. Summers, Barbara F. Jones, Saurabh Chandra and Mark E. Ladner', 'subject': 'During the COVID-19 pandemic, tele-mental health (TMH) was a viable approach for providing accessible mental and behavioral health (MBH) services. This study examines the sociodemographic disparities in TMH utilization and its effects on healthcare resource utilization (HCRU) and medical expenditures in Mississippi. Utilizing a cohort of 6787 insured adult patients at the University of Mississippi Medical Center and its affiliated sites between January 2020 and June 2023, including 3065 who accessed TMH services, we observed sociodemographic disparities between TMH and non-TMH cohorts. The TMH cohort was more likely to be younger, female, White/Caucasian, using payment methods other than Medicare, Medicaid, or commercial insurers, residing in rural areas, and with higher household income compared to the non-TMH cohort. Adjusting for sociodemographic factors, TMH utilization was associated with a 190% increase in MBH-related outpatient visits, a 17% increase in MBH-related medical expenditures, and a 12% decrease in all-cause medical expenditures (all p < 0.001). Among rural residents, TMH utilization was associated with a 205% increase in MBH-related outpatient visits and a 19% decrease in all-cause medical expenditures (both p < 0.001). This study underscores the importance of addressing sociodemographic disparities in TMH services to promote equitable healthcare access while reducing overall medical expenditures.', 'keywords': 'telehealth; mental health services; access to health care; healthcare resources; health expenditure; healthcare disparities; socioeconomic disparities; health equity', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.25', 'creationDate': \"D:20240622174944+08'00'\", 'modDate': \"D:20240622115218+02'00'\", 'trapped': ''}, page_content='Citation: Zhang, Y.; Lal, L.S.; Lin, Y.-Y.;\\nSwint, J.M.; Zhang, Y.; Summers, R.L.;\\nJones, B.F.; Chandra, S.; Ladner, M.E.\\nTele-Mental Health Service: Unveiling\\nthe Disparity and Impact on\\nHealthcare Access and Expenditures\\nduring the COVID-19 Pandemic in\\nMississippi. Int. J. Environ. Res. Public\\nHealth 2024, 21, 819. https://doi.org/\\n10.3390/ijerph21070819\\nAcademic Editor: Paul B.\\nTchounwou\\nReceived: 31 May 2024\\nRevised: 19 June 2024\\nAccepted: 20 June 2024\\nPublished: 22 June 2024\\nCopyright: © 2024 by the authors.\\nLicensee MDPI, Basel, Switzerland.\\nThis article is an open access article\\ndistributed\\nunder\\nthe\\nterms\\nand\\nconditions of the Creative Commons\\nAttribution (CC BY) license (https://\\ncreativecommons.org/licenses/by/\\n4.0/).\\nInternational  Journal  of\\nEnvironmental Research\\nand Public Health\\nArticle\\nTele-Mental Health Service: Unveiling the Disparity and Impact\\non Healthcare Access and Expenditures during the COVID-19\\nPandemic in Mississippi\\nYunxi Zhang 1,2,*\\n, Lincy S. Lal 3')"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pdf_links = [\n",
    "\"https://www.mdpi.com/1660-4601/21/7/819/pdf\",\n",
    "\"https://www.mdpi.com/2038-8330/16/3/41/pdf\"]\n",
    "\n",
    "documents = []\n",
    "for pdf_link in pdf_links:\n",
    "    loader = PyMuPDFLoader(pdf_link)\n",
    "    loaded_docs = loader.load()\n",
    "    documents.extend(loaded_docs)\n",
    "\n",
    "    CHUNK_SIZE = 1000\n",
    "    CHUNK_OVERLAP = 200\n",
    "\n",
    "    text_splitter = RecursiveCharacterTextSplitter(\n",
    "        chunk_size=CHUNK_SIZE,\n",
    "        chunk_overlap=CHUNK_OVERLAP,\n",
    "        length_function=len,\n",
    "    )\n",
    "split_chunks = text_splitter.split_documents(documents)\n",
    "print(len(split_chunks))\n",
    "split_chunks[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-10-09 14:42:52 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n"
     ]
    }
   ],
   "source": [
    "EMBEDDING_MODEL = \"text-embedding-3-small\"\n",
    "embeddings = OpenAIEmbeddings(model=EMBEDDING_MODEL)\n",
    "\n",
    "LOCATION = \":memory:\"\n",
    "COLLECTION_NAME = \"PubMed\"\n",
    "VECTOR_SIZE = 1536\n",
    "\n",
    "\n",
    "qdrant_client = QdrantClient(LOCATION)\n",
    "\n",
    "qdrant_client.create_collection(\n",
    "    collection_name=COLLECTION_NAME,\n",
    "    vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),\n",
    ")\n",
    "\n",
    "qdrant_vector_store = QdrantVectorStore(\n",
    "    client=qdrant_client,\n",
    "    collection_name=COLLECTION_NAME,\n",
    "    embedding=embeddings,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-10-09 14:42:54 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
      "2024-10-09 14:42:55 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n"
     ]
    }
   ],
   "source": [
    "qdrant_vector_store.add_documents(split_chunks)\n",
    "qdrant_retriever = qdrant_vector_store.as_retriever()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "\n",
    "RAG_PROMPT = \"\"\"\n",
    "CONTEXT:\n",
    "{context}\n",
    "\n",
    "QUERY:\n",
    "{question}\n",
    "\n",
    "You are a helpful assistant. Use the available context to answer the question. If you can't answer the question, say you don't know.\n",
    "\"\"\"\n",
    "\n",
    "rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "openai_chat_model = ChatOpenAI(model=\"gpt-4o-mini\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "from operator import itemgetter\n",
    "from langchain.schema.output_parser import StrOutputParser\n",
    "\n",
    "rag_chain = (\n",
    "    {\"context\": itemgetter(\"question\") | qdrant_retriever, \"question\": itemgetter(\"question\")}\n",
    "    | rag_prompt | openai_chat_model | StrOutputParser()\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-10-09 14:44:24 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
      "2024-10-09 14:44:27 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "data": {
      "text/markdown": [
       "```markdown\n",
       "Tele-mental health (TMH) services leverage telecommunication and videoconferencing technologies to facilitate decentralized mental and behavioral healthcare. This approach allows patients in remote locations to access mental health services, overcoming geographical barriers and improving healthcare access, particularly in underserved rural communities. During the COVID-19 pandemic, TMH emerged as a viable solution for providing accessible mental and behavioral health services.\n",
       "```"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "pretty_print(rag_chain.invoke({\"question\" : \"What is Tele-mental health (TMH) services?\"}))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# set up agents"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "import functools\n",
    "import operator\n",
    "\n",
    "from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n",
    "from langchain_openai.chat_models import ChatOpenAI\n",
    "import functools\n",
    "from IPython.display import Image, display\n",
    "llm = ChatOpenAI(model=\"gpt-4-turbo\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Any, Callable, List, Optional, TypedDict, Union\n",
    "\n",
    "from langchain.agents import AgentExecutor, create_openai_functions_agent\n",
    "from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser\n",
    "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
    "from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n",
    "from langchain_core.runnables import Runnable\n",
    "from langchain_core.tools import BaseTool\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "from langgraph.graph import END, StateGraph\n",
    "\n",
    "def agent_node(state, agent, name):\n",
    "    result = agent.invoke(state)\n",
    "    return {\"messages\": [HumanMessage(content=result[\"output\"], name=name)]}\n",
    "\n",
    "def create_agent(\n",
    "    llm: ChatOpenAI,\n",
    "    tools: list,\n",
    "    system_prompt: str,\n",
    ") -> str:\n",
    "    \"\"\"Create a function-calling agent and add it to the graph.\"\"\"\n",
    "    system_prompt += (\"\\nWork autonomously according to your specialty, using the tools available to you.\"\n",
    "    \" Do not ask for clarification.\"\n",
    "    \" Your other team members (and other teams) will collaborate with you with their own specialties.\"\n",
    "    \" You are chosen for a reason! You are one of the following team members: {team_members}.\")\n",
    "    prompt = ChatPromptTemplate.from_messages(\n",
    "        [\n",
    "            (\n",
    "                \"system\",\n",
    "                system_prompt,\n",
    "            ),\n",
    "            MessagesPlaceholder(variable_name=\"messages\"),\n",
    "            MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
    "        ]\n",
    "    )\n",
    "    agent = create_openai_functions_agent(llm, tools, prompt)\n",
    "    executor = AgentExecutor(agent=agent, tools=tools)\n",
    "    return executor\n",
    "\n",
    "def create_team_supervisor(llm: ChatOpenAI, system_prompt, members) -> str:\n",
    "    \"\"\"An LLM-based router.\"\"\"\n",
    "    options = [\"FINISH\"] + members\n",
    "    function_def = {\n",
    "        \"name\": \"route\",\n",
    "        \"description\": \"Select the next role.\",\n",
    "        \"parameters\": {\n",
    "            \"title\": \"routeSchema\",\n",
    "            \"type\": \"object\",\n",
    "            \"properties\": {\n",
    "                \"next\": {\n",
    "                    \"title\": \"Next\",\n",
    "                    \"anyOf\": [\n",
    "                        {\"enum\": options},\n",
    "                    ],\n",
    "                },\n",
    "            },\n",
    "            \"required\": [\"next\"],\n",
    "        },\n",
    "    }\n",
    "    prompt = ChatPromptTemplate.from_messages(\n",
    "        [\n",
    "            (\"system\", system_prompt),\n",
    "            MessagesPlaceholder(variable_name=\"messages\"),\n",
    "            (\n",
    "                \"system\",\n",
    "                \"Given the conversation above, who should act next?\"\n",
    "                \" Or should we FINISH? Select one of: {options}\",\n",
    "            ),\n",
    "        ]\n",
    "    ).partial(options=str(options), team_members=\", \".join(members))\n",
    "    return (\n",
    "        prompt\n",
    "        | llm.bind_functions(functions=[function_def], function_call=\"route\")\n",
    "        | JsonOutputFunctionsParser()\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "from tempfile import TemporaryDirectory\n",
    "from typing import Dict, Optional\n",
    "from typing_extensions import TypedDict\n",
    "import uuid\n",
    "import os\n",
    "from typing import Annotated, List, Tuple, Union\n",
    "from langchain_core.tools import tool\n",
    "\n",
    "os.makedirs('./content/data', exist_ok=True)\n",
    "\n",
    "def create_random_subdirectory():\n",
    "    random_id = str(uuid.uuid4())[:8]  # Use first 8 characters of a UUID\n",
    "    subdirectory_path = os.path.join('./content/data', random_id)\n",
    "    os.makedirs(subdirectory_path, exist_ok=True)\n",
    "    return subdirectory_path\n",
    "\n",
    "WORKING_DIRECTORY = Path(create_random_subdirectory())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "@tool\n",
    "def retrieve_information(\n",
    "    query: Annotated[str, \"query to ask the retrieve information tool\"]\n",
    "    ):\n",
    "  \"\"\"Use Retrieval Augmented Generation to retrieve information about 2 papers:\n",
    "  Paper 1: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
    "  Paper 2: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\"\"\"\n",
    "  return rag_chain.invoke({\"question\" : query})\n",
    "\n",
    "@tool\n",
    "def create_citation(\n",
    "    points: Annotated[List[str], \"cite the correct source paper and add citations/reference numbers inside to the paragraph. At the end of the paragraph, make a list of paper you referenced.\"],\n",
    "    file_name: Annotated[str, \"File path to save the outline.\"],\n",
    ") -> Annotated[str, \"Path of the saved outline file.\"]:\n",
    "    \"\"\"Added and saved citations.\"\"\"\n",
    "    with (WORKING_DIRECTORY / file_name).open(\"w\") as file:\n",
    "        for i, point in enumerate(points):\n",
    "            file.write(f\"{i + 1}. {point}\\n\")\n",
    "    return f\"citation saved to {file_name}\"\n",
    "\n",
    "\n",
    "@tool\n",
    "def read_document(\n",
    "    file_name: Annotated[str, \"File path to save the document.\"],\n",
    "    start: Annotated[Optional[int], \"The start line. Default is 0\"] = None,\n",
    "    end: Annotated[Optional[int], \"The end line. Default is None\"] = None,\n",
    ") -> str:\n",
    "    \"\"\"Read the specified document.\"\"\"\n",
    "    with (WORKING_DIRECTORY / file_name).open(\"r\") as file:\n",
    "        lines = file.readlines()\n",
    "    if start is not None:\n",
    "        start = 0\n",
    "    return \"\\n\".join(lines[start:end])\n",
    "\n",
    "\n",
    "@tool\n",
    "def write_document(\n",
    "    content: Annotated[str, \"Text content to be written into the document.\"],\n",
    "    file_name: Annotated[str, \"File path to save the document.\"],\n",
    ") -> Annotated[str, \"Path of the saved document file.\"]:\n",
    "    \"\"\"Create and save a text document.\"\"\"\n",
    "    with (WORKING_DIRECTORY / file_name).open(\"w\") as file:\n",
    "        file.write(content)\n",
    "    return f\"Document saved to {file_name}\"\n",
    "\n",
    "\n",
    "@tool\n",
    "def edit_document(\n",
    "    file_name: Annotated[str, \"Path of the document to be edited.\"],\n",
    "    inserts: Annotated[\n",
    "        Dict[int, str],\n",
    "        \"Dictionary where key is the line number (1-indexed) and value is the text to be inserted at that line.\",\n",
    "    ] = {},\n",
    ") -> Annotated[str, \"Path of the edited document file.\"]:\n",
    "    \"\"\"Edit a document by inserting text at specific line numbers.\"\"\"\n",
    "\n",
    "    with (WORKING_DIRECTORY / file_name).open(\"r\") as file:\n",
    "        lines = file.readlines()\n",
    "\n",
    "    sorted_inserts = sorted(inserts.items())\n",
    "\n",
    "    for line_number, text in sorted_inserts:\n",
    "        if 1 <= line_number <= len(lines) + 1:\n",
    "            lines.insert(line_number - 1, text + \"\\n\")\n",
    "        else:\n",
    "            return f\"Error: Line number {line_number} is out of range.\"\n",
    "\n",
    "    with (WORKING_DIRECTORY / file_name).open(\"w\") as file:\n",
    "        file.writelines(lines)\n",
    "\n",
    "    return f\"Document edited and saved to {file_name}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "import operator\n",
    "from pathlib import Path\n",
    "\n",
    "class DocWritingState(TypedDict):\n",
    "    messages: Annotated[List[BaseMessage], operator.add]\n",
    "    team_members: str\n",
    "    next: str\n",
    "    current_files: str"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "def prelude(state):\n",
    "    written_files = []\n",
    "    if not WORKING_DIRECTORY.exists():\n",
    "        WORKING_DIRECTORY.mkdir()\n",
    "    try:\n",
    "        written_files = [\n",
    "            f.relative_to(WORKING_DIRECTORY) for f in WORKING_DIRECTORY.rglob(\"*\")\n",
    "        ]\n",
    "    except:\n",
    "        pass\n",
    "    if not written_files:\n",
    "        return {**state, \"current_files\": \"No files written.\"}\n",
    "    return {\n",
    "        **state,\n",
    "        \"current_files\": \"\\nBelow are files your team has written to the directory:\\n\"\n",
    "        + \"\\n\".join([f\" - {f}\" for f in written_files]),\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_writer_agent = create_agent(\n",
    "    llm,\n",
    "    [retrieve_information,write_document, edit_document, read_document],\n",
    "    (\"You are an expert writing paper summarization.\\n\"\n",
    "    \"Below are files currently in your directory:\\n{current_files}\"\n",
    "    \"You may only speak as your role. You must not speak as any other roles.\"),\n",
    ")\n",
    "context_aware_doc_writer_agent = prelude | doc_writer_agent\n",
    "doc_writing_node = functools.partial(\n",
    "    agent_node, agent=context_aware_doc_writer_agent, name=\"DocWriter\"\n",
    ")\n",
    "\n",
    "\n",
    "citation_agent = create_agent(\n",
    "    llm,\n",
    "    [create_citation, write_document, edit_document, read_document],\n",
    "    (\"You are an expert in research citation. You will add citations numbers inside the research summarization and at the end of the paragraph, create a citation list.\\n\"\n",
    "    \"Below are files currently in your directory:\\n{current_files}\"\n",
    "    \"You may only speak as your role. You must not speak as any other roles.\"),\n",
    ")\n",
    "context_aware_citation_agent = prelude | citation_agent\n",
    "citation_node = functools.partial(\n",
    "    agent_node, agent=context_aware_citation_agent, name=\"CiteEditor\"\n",
    ")\n",
    "\n",
    "copy_editor_agent = create_agent(\n",
    "    llm,\n",
    "    [write_document, edit_document, read_document],\n",
    "    (\"You are an expert in research ariticle editing who focuses on fixing grammar, spelling, and tone issues\\n\"\n",
    "    \"Below are files currently in your directory:\\n{current_files}\"\n",
    "    \"You may only speak as your role. You must not speak as any other roles.\"),\n",
    ")\n",
    "context_aware_copy_editor_agent = prelude | copy_editor_agent\n",
    "copy_editing_node = functools.partial(\n",
    "    agent_node, agent=context_aware_copy_editor_agent, name=\"CopyEditor\"\n",
    ")\n",
    "\n",
    "\n",
    "doc_writing_supervisor = create_team_supervisor(\n",
    "    llm,\n",
    "    (\"You are a supervisor tasked with managing a conversation between the\"\n",
    "    \" following workers: {team_members}. You should always verify the technical\"\n",
    "    \" contents after any edits are made. \"\n",
    "    \"Given the following user request,\"\n",
    "    \" respond with the worker to act next. Each worker will perform a\"\n",
    "    \" task and respond with their results and status. When each team is finished,\"\n",
    "    \" you must respond with FINISH.\"),\n",
    "    [\"DocWriter\", \"CiteEditor\",\"CopyEditor\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [],
   "source": [
    "authoring_graph = StateGraph(DocWritingState)\n",
    "authoring_graph.add_node(\"DocWriter\", doc_writing_node)\n",
    "authoring_graph.add_node(\"CiteEditor\", citation_node)\n",
    "authoring_graph.add_node(\"CopyEditor\", copy_editing_node)\n",
    "authoring_graph.add_node(\"supervisor\", doc_writing_supervisor)\n",
    "\n",
    "authoring_graph.add_edge(\"DocWriter\", \"CiteEditor\")\n",
    "authoring_graph.add_edge(\"CiteEditor\", \"CopyEditor\")\n",
    "authoring_graph.add_edge(\"CopyEditor\", \"supervisor\")\n",
    "\n",
    "\n",
    "\n",
    "authoring_graph.add_conditional_edges(\n",
    "    \"supervisor\",\n",
    "    lambda x: x[\"next\"],\n",
    "    {\n",
    "        \"DocWriter\": \"DocWriter\",\n",
    "        \"CiteEditor\": \"CiteEditor\",\n",
    "        \"CopyEditor\" : \"CopyEditor\",\n",
    "        \"FINISH\": END,\n",
    "    },\n",
    ")\n",
    "\n",
    "authoring_graph.set_entry_point(\"supervisor\")\n",
    "chain_linkedin = authoring_graph.compile()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## the whole team"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAKdAZEDASIAAhEBAxEB/8QAHQABAQACAwEBAQAAAAAAAAAAAAYFBwMECAECCf/EAF4QAAEEAQIDAgYHFQYDBQUJAAEAAgMEBQYRBxIhEzEIFBUiQZQWFzI3UVbTIyQ0NkJTVFVhcXJ1dpGTsbO00dLUUmJ0gaGyM3OVJjVDRIJFhJKjwQkYJUZjZIOkwv/EABsBAQEAAwEBAQAAAAAAAAAAAAABAgMFBAYH/8QAOBEBAAECAgYJAwMDBAMAAAAAAAECEQMSFCExUZHRBBNBUmFicZKhM7HBQoHwBSIyFSOywlOi4v/aAAwDAQACEQMRAD8A/qmiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIC/EkrIWF8j2sY3vc47ALE5vMWIbMWNxkbJsrO0vBlBMNaMHYyy7bHbfo1gILz0BADns6kegsXYkE+XY7P29ye2yQEjW79NmR7cjBt06N3+Ek7lboopiM1c2+623si7VGGY4h2WogjvBss/ivnsqwv24oess/ivjdKYRoAGHx4A6ACqz+C++xXC/aeh6sz+Cy/2fH4XUeyrC/bih6yz+K7FTMUMg7lq3a1l3wQytef9Cuv7FcL9p6HqzP4Lr29DadvMLZ8Fjn9NubxVgcOu/Qgbjr16J/s+PwamcRS0lO7o1jrNSWzk8Mzd01GUunsQN/tQOPnPA9MbuYke4O4DH0sE8VqCOaGRk0MjQ9kjHBzXNI3BBHeCFrroy64m8JMORERa0EREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQS+hNshVv5t+zp8lblcHfBBG90cLfuDlbzbDpzPd377n98QeJGmuFenH53VWWiw+LbI2ETSNc8vkd7ljGMBc9x2PRoJ6H4F+eHA8X0tHRduJaFiem8EbdWSuAP3i3lcPuOCiPCh0/h9RcNoY8xg9UZkVslXtVJNGwmXJ0LLObs7UTR/Y3O/Q+67l6OkfVqjx+Oz4Wdqa4neGbo3Q2D0DmcdI/M4nVOX8S8bFWyzxevG8tsTcnYlznsds0RbBxJJAPKVX6r8KHhloarg7Gd1IcbDmqceQpPlx9rZ8D/cvftEeyB+CTlI9IC89ZqHivnuDHDXU2qtN5zUGS0rr+HKOqxY9rMvZxMXaNZNJVYek3nbFg69xPpcvzx2yHEDihqLLwTae4nV9KZfTTW6dw+Ag8UY65I17ZGZUg/Mxvygse7l5d+m56+dHo/XPhJ8N+HGQxtHP6mjq2clRGRpMgqz2fGa5OwfGYo3B2/eADuQCdtuqjsb4YOlchx4k4duZYgifUquqX3U7RfYtTubywuj7Edk0Nc0l7yG7nYkEFa44D6K1BDxV4KZHKaay1ODEcNTjbFi/j5Ym1LbJQzsnOc0Bjy0O2adiWncdCrPLSZrh74Y9rPy6R1Bm8BqfBUsTBk8LSNmGpO2wQ42SCOyYGu5i4+ju367B6RUvo7bHZDPYRuwgo2hNWaPqIZm8/L94SdqAO4NDQO7YVCmNODxrV2qbrd+ybJXotJG3MY4+dxHwgGYj77SPQvRh66K4ndHG8fiZWNkqdERedBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREE3kYJdOZaxmasD7FK0G+Ua0DHPl5mgNbPG0blxDRyuaBu5rW8vVnK/OUMhVylVlmnYitV3+5lheHNP+YXYWAyGiMXduSXImz427ISZLOOsPrukO227wwgPO23V4PcPgC35qa4iK9Ux2/z+eC7drPopf2ETju1Tnmj0Dt4j+uPdSfELH5XTEWnnUtU5gm/mqlCbtpYT8ykcQ7l+Zjzvg/Ur1eH3/iS0b21EUv7CbHxqz36aH5JffYHHMOW5nM5diI2Mb7xiDh93sgw/6/cTJhxtr+JLRvdrMahcyy7F4ns7eacPcO3dFVBHSSYjuHwN3Bf3DYczm97B4eHA4uGlAXPazmc+SQ7vlkc4ufI4/wBpznOcfukr94rD0cHUFXH1IadcOLuzhYGguPe4/CT3knqfSu4sKqotko2fcERFqQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQFr3jIQING7kj/ALUY/u/DP3VsJa94x79ho3bb6aMf37f2z8KDYSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAtecZf8AgaM6gf8AajHd4/vlbDWvOMu3YaM3+NGO9G/1ZQbDREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBFgdQ6lkxdiGhQqtv5SZjpWwySmKOOMdOeR4a7lG5AAAJJ32GzXEYd2d1fudqGEI9G9ub5Nemjo9dcZtUeswtlsiiPLusPsDB+tzfJp5d1h9gYP1ub5NZ6LXvjjBZboojy7rD7Awfrc3yaeXdYfYGD9bm+TTRa98cYLLdFEeXdYfYGD9bm+TTy7rD7Awfrc3yaaLXvjjBZboojy7rD7Awfrc3yaeXdYfYGD9bm+TTRa98cYLLdeLfDH8MCzwa4h4jS17QstyrTt085TyYyTWNuRsO7mhhhdyEP5277n3IPp2Xpvy7rD7Awfrc3ya1Hx/4C2vCI9jBz9LEQSYO+LTZILMvNPCdu0gcez6Nfyt6+jbp3pote+OMFm5OEeuL3ErhtgNU5DBv05Zy1fxoY2Sft3RRucezJfyt35mcr+4bc23o3VeoaLL6tgiZFFjcDHGxoa1jLUwDQO4Adn0C/Xl3WH2Bg/W5vk00WvfHGCy3RRHl3WH2Bg/W5vk08u6w+wMH63N8mmi1744wWW6KI8u6w+wMH63N8mnl3WH2Bg/W5vk00WvfHGCy3RRHl3WH2Bg/W5vk08u6w+wMH63N8mmi1744wWW6KI8u6w+wMH63N8mnl3WH2Bg/W5vk00WvfHGCy3RRQ1XqHHNNjJYqjNTYOaU4+zI+ZjfS5rHRjn2G5IBB6dA4kBWNaxFcrxTwSNlhlYHskYdw5pG4I+4QtOJhVYeuos5ERFpQREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQQ1o78TcqPQMPS26fDNb3/UFlliLPvnZb8T0f29tZddar9PpH2hZEU1rziRprhliY8lqbLRYurLKIIeZrpJJpD3MjjYC97vuNBKxeK42aMzWEx2XqZd7qOQykeFrvkpWInOuP8AcxFjow5pO46uAHwla7wi5RF1cplaeDxtrI5G1DRoVYnTT2bDwyOKNo3c5zj0AABJJVHaRSOvOLGluGmFxuW1Dkn1KORsMq1JK9Se06aVzHPa1rIWPd1axx3226LsaD4laZ4nY2e9pnLw5SCvKYZw1ro5IJO/lkjeA9h+44BS8bBTIiKgiIgIsVNqnEwz5aDx6KWziYW2L1eE9rLXY5rnNLmN3du4McQNtzt0C1ePC/4Vm4agzeUNsRiUwexzJ9oGEkB3L4vvtuCN/uKTMRtG5UXFVsx3a0NiIkxSsEjC5paSCNxuDsR94rlVBEWH1fq7E6D03fz+dt+I4miwSWLHZvk5G7gb8rAXHqR3AqDMIi6NrOY+jlKONsXYIchfEhq1XyASTiMAyFje8hoI3I7tx8IVHeREQCNxse5cXC5xdw00oT3nFVf2TVyrh4We9npP8VVf2TVji/Rn1j7SvYqURFzkEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREELZ987Lfiej+3trLrEWffOy34no/t7ay661f6fSPtCy0bqN1c+GPpFuYLfFhpO47CCb3Pj3jDO37P/wDU7Dl/9O65PCkqDN4bQdCG/NRkk1ti4HWaT2iaAuLurSQQ1wDgQSOm4K2Pr/hlpjijjIKGp8RFlK9eUTwOc98csEg+qjkYWvYfutIWKw/AvQ2AxNLG0MCyCrTykeaj+eJnSOuR+4mkkLy+Rw7vPLhsANlpmJ1wjTd3U83Difi1pO9qDVWXxlJ2FGIdFkO0yonvF8fYR2ZNyA6SNuznHzQ92x7lG5tuqI+HPhBaL1NbyjK2M03Xy1KvY1BLkrFcyRWC5jrRZG97HGBm8bt27Fw3c1y9R53hHpLU0uopMnhmXH6hirQ5Ivmk+bNrlxgI2d8zcwvcQ5nKd9jvuBt09PcDdD6XmyU2PwTWy5OkcfffYszWDdgJJLZzI93anqRzP3cGnlB26LHLI0xxTwlzRmjOCEemhYz+QOq6livFnctNKJHuoWfNM8naOYz4AAQPQFiNVaC1zidb4fUGazrdLZrXmr8dRu1NKW5AyGlXoXAI3Sua0yPfuSSW7AtYR1aNt+YTgXonTuPxFKjiZmVcRkW5ajHLkLM3YWWxGJrml8hPKGOLQz3A/sqlz+kcTqi1hrOTqeMzYe6MhRd2j2djOGPjD9mkc3myPGztx17twFco0odL29VcYMroKXVuqMPp/TeCq3KjaWamZcuTWZp+eeWwXGSUR9m1ga4lo36g9yieFuodQcac/oDH5zVWcgqWNLZWa3Jhr76Pj8lbJMrRWC6MgguZ5+7C3ffb3JIPoXXnBzSHEy3WtahxBt268ToI7MFqarL2Tju6Jz4Xsc5hPUscS37iyGL4cabweYxeUx+JhpW8ZjXYema7nMjgqOex5ibGDybc0bDvtv07+pTLNx5m0BktRYzRPCbWU2sdRZTK5XVhwN6K/kHS1bFTt7NcNMHRnOBCx3abc5duSTv0+ZmxmqPC/i1xCj1vqOpnNN6oy3k2OTKyvoiOG1tHWdWcezcx3uACNxzANI2AXo+rwk0nSwOEwsOK5Mbhcj5WoQeMynsbXaPk7TmL93efK88riW+dttsBtr3RPguadqZrPZrVeMrZfKWtTXc3U5Llh1drJJzJCZICWxOkaD1JY7Y9ziscs7BieFek693wmOJuZmt5ivcrw4i14n5VsdgXTVpuZskXPySNadw1rgQzbzQF+9c6gs6S8IXXOcpQC1cxnDAXYICCRJJHbtva3p8JaB/mtr5ThTpfMa2p6us41w1FVYyNl2C1NCXtYS5jZGMeGygEnYPDtt1k/YbhvZfNqjxIHOTY9uLktGR5DqzZHSCPk35fdvcd9t+u2+3RZ2Hnfg7gOK2Vm0Nq9uWNihkRDcy09zVkt6C9Wli5nCKkajI4HAua5ojeA3lLTzbkqUwMOoMjw34Uakk15q5uU1Dqk4W+5uXk7J9N0tpnI2M7ta4NhbtIBzgknm3229HaS4C6E0LqBmZwWBGOuxmQwtZandBAZN+fsoHPMcW+535GjvWQqcJNJ0MFgMNBiuTG4G+MpjoPGZT2Fnmkdz8xfu7rLIdnEjzu7oNscsjzrqjLZ/Byar0XW1XnxSx2vtPY+pkH5KR16OrcbWklhM5Je9oMjwOcu6HY7hY7j6+9ovHcVdEQZ3KZzT0mka+aEeYuvuzULBuiIsbLIS/ke0c3K4nYsO2wK3bxd4B0Ne0p242tWgtZXUGKyubfZsTNFqGq6Nrmt5d+V3YxhoDQ0E9SQeqosDwM0LpvB53EUtPxOpZ1vJlPHJpbUtxvKWgSSyuc9wAJ2HN5u522TLI1hx/u5PU2r72E0rZ1K3M4XCeUbUmO1CcTQpteZOye8NjeZ5SY3+YRycrepG6l3UXcW9X+DhnM3k8tXyGa0xcntSYvJz0t5RWrSFzOye3kLnPdzcu3MA0HcNG27r/g96AyfkvxrAduMbTbjoQ65Y2krNO7YZvmnzdgJPmy846n4SuXIcB9DZTS+D09YwjvJeDcXYxsV2xHLU33BEczZBIG7OI5ebbbYbbAAWaZkaOyT+JfF3XHEZ2CuT0jp/LPxGOZBquXFsp8kMbmTSVWVZW2A9zy/eRxBHmgN5dz6e0y3Ks03im5x0D82KkQvOq79kbHIO0LNwDy83Nt0HTZRupvB80Bq/MeVcrp8T33Qx15pYrc8PjMbBsxs7Y5GiYAdPmgd06LYgAAAHcFYiY2guHhZ72ek/xVV/ZNXMuHhZ72ek/xVV/ZNVxfoz6x9pXsVKIi5yCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCFs++dlvxPR/b21l1w6lwt+PLMzWLibcn7AVrFN8nIZWAucwscegc0ud0PQhx6jYb4t2VzzXEDR2UcAe8Waex/+eutFsSmJiY2RGuYjZFu1la7NIsJ5Wz3xMyvrVL5dPK2e+JmV9apfLq5PNHujmWZtFhPK2e+JmV9apfLp5Wz3xMyvrVL5dMnmj3RzLM2ikNS6+s6PxT8lmdN38fTa5rBJLbp7ve47NjY0T7ve47BrGgucSAASdl36eoM5eqQ2I9FZlkczBI1s0tSN4BG45mOmDmn4QQCO4gFMnmj3RzLKBFhPK2e+JmV9apfLp5Wz3xMyvrVL5dMnmj3RzLM2iwnlbPfEzK+tUvl08rZ74mZX1ql8umTzR7o5lmbRYTytnviZlfWqXy6eVs98TMr61S+XTJ5o90cyzNosJ5Wz3xMyvrVL5dPK2e+JmV9apfLpk80e6OZZm0WjuKvhc6S4JZ6DDa0xmawt+xALETDXZM2SMkjmD43uaeoI79wqfhdxxo8Z9Oy53RuCymZxUVl1R9gOrw7Sta1xbtJK09A9vXbbr9wpk80e6OZZspFhPK2e+JmV9apfLp5Wz3xMyvrVL5dMnmj3RzLM2iwnlbPfEzK+tUvl08rZ74mZX1ql8umTzR7o5lmbXDws97PSf4qq/smrGF+pMrGa8GCmw75N2m5fnhe2EdPODYpHFxA32HTcjqQOqscRjIcLiqWPr83i9SFkEfOd3crWho3PpOwWjHmKcPJeJmZjZN9l93qbIdtERc9iIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiLis2YaVaWxYlZBXiYZJJZXBrWNA3LiT0AA67lByqP1DrySPKS4HTVHy9qJjQZY+fs6lEHudZm2PJ06iNodI7vDeXdwxrslmeKHmYee3pzShcRJluTs7uRb8FUO6wxHqO2cOdw3MQaCyZWGntOYzSmJhxmIpRUKMW5bFC3bdxO7nOPe5ziS5ziSXEkkkklBhNPaBbTycecz106i1I3n7O7LH2cNNrhs5lWHdwhaR0J3dI4dHvdsNq1EQEREBERAREQEREGifC18F6n4TWkMXQbdiw+ax11ktfJSRmTkgc4NnYWgjm8zzgNxu5jRu0EkZvSGisl4PWl8dg9O1ptT6Hx0PZtoxxRtylTqS+RpbyMstJLnuZytk3Li0ylzWDbaIMbp7UeM1Xi48hibkd2o8kc8Z6scO9j2nqx47i1wDmnoQCskpHP8P47eYfn8Hcdp/Urg1slyJpfBba3bZlqDma2YADYO3EjBuGPYCd+TSutJMlkX4LOU24XU8MRmdTEnaQ2ogWtdPWkIHaxhzmh3QOYXsD2t52FwVSIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIg4rNmGlWlsWJWQV4WGSSWVwaxjQNy4k9AAOu5UJSx8nFWWLKZWN0ekWkSY/Dys2N8h27bdkelh2BigO2w8+QF5ayD7xL5tQZ7SmkCHeJZSxLdyIAO0lSsGvMRI7g+Z9drh3OZztIIcVfoCIiAiIgIiICIiAiIgIiICIiAsFrDSkOrsUyu6eSherSi1QyNfbtqVhoIbKzfp3Oc1zT5r2PexwLHuBzqIJnQGq5dVYacX4Y6mcxtl+PylSIkshssDSeXfryPY+OVhPUslYTsSQqZa9s8ul+N1KVrnMraqxj68rNvM8bqHnjPf7p8MswPTqK7PgWwkBERAREQEREBERAREQEREBERAREQEREBERAREQEREBEXXyGRqYmnJbvWoadWIbvnsSCNjB8JcegViJmbQOwil3cUNHscWu1RiGuB2IN2Pcf6r57aWjvjTiPXY/4rfo+N3J4SyyzuVKKW9tLR3xpxHrsf8U9tLR3xpxHrsf8AFNHxu5PCTLO5Uopb20tHfGnEeux/xT20tHfGnEeux/xTR8buTwkyzua/1RxW0RQ486YFrWOBrOo4XNVbQlykDfF5vGccOzk3eOV/mSeaRv5ju7Y77ipXa+SpwW6k8VqpYjbLDPA8PjkY4btc1w6EEEEEd+6/mnxh8GfTmsPDKo3quZx7tA6hnOZy1xltnZwPDi6xC52/R0rurf8Amn+yV/QeDiXomrBHDDqXCwwxtDGRx24mta0DYAAHoAPQmj43cnhJlncrEUt7aWjvjTiPXY/4p7aWjvjTiPXY/wCKaPjdyeEmWdypRS3tpaO+NOI9dj/intpaO+NOI9dj/imj43cnhJlncqUUt7aWjvjTiPXY/wCKzmKzWPztY2MberX4A4sMlaVsjQ4d4JBOxHwLCrCxKIvVTMfslph3URFqQREQEREBERAREQa94wuNBui8w2Ts/J2p6AJ3PUWXOo7Hb4fGx/nsthLXnH49lwqylnlDjTsUro336GG3DKD0+As3/wAlsNAREQEREBERAREQEREBERAREQEREBERAREQEREBERAUPl+XJ8QZK1gCWLG4+CzXjeN2skmknY6Tbu5uWENB23Ac4A+c7e4ULP752a/E+P8A211ezo22qd0fmIZR2suiIt7EREQEREBERAREQEREBYW4W4zV+nbUAEU16y+jYLRt20fYTSNDvh5XRggncjdwG3MVmlg879Mejfxs79zsrZRrvHhP2llG1foiLkMRERAREQEREBERBrzwh2g8CdfPLgwRYW1NzO32HJG5+/T8FbDWvfCIDTwA4mc4LmexnJkhp2J+dZO47Hb8y2Ax3M0H4Rug/SIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIChZ/fOzX4nx/wC2uq6ULP752a/E+P8A211e3o36/T8wyjZLLrSnE6/mtd8ZsHw0x2dyGmcS3DS6gy97Ey9jcsRiYQwwRy7ExgvLnOLepDQAR6d1rVfFDhnqPIa3wWu9DZDHUtU4yrLjZ6uYbJ4nkKcjmvMUjo93sLXtD2uAPXfcELZVsYpHixTzPB3T/Dupp7L6k1LYs60rxmHI5cvntRvrWPnZ8zyN4uZjXEP5ttt+uwCqsNxozOSwes47GkI6WrtLTxRW8NJl4hXeyVjZGTNtua1oj7NznEloI5HDYnbfq5Th/wAQdaw6Os6nu6dbfw+q4M1JXxYnbDFUjryxmJj3gulkLpObctYOpHoG+E4heD/ntW5nX1+tbxT4s1ksJkalC86QwWhSaO0r2wG9I3kfU8/cCR6FhrjYMXlfCYyerOC3FTI6epUKGrdKUi97qOXhyFRjXxOe2eKwyMtkLQ2Q9m5g86PlO2+47eqdZa21NX4XaMtyDRuU1fPO67kMPf8AGZm0q1YTP7KV0TOzllLmjcNPKN9ifR2MfwI1RlxxVZn7GBx0OucJDj2xYQSluPkjimiA2e1vat5ZWu5vMO4I5QNiu3k+FWv9SaX0nfuXNPYjX+kLgmxNqk+eelZiMAhlinDmse0StLt+Xfl2bsT1T+4Ye9mct4O3EeDFeXszq7TOY0/k8pBTz142bNa1RYyRwbYcC/s5GP22dzbOG4+BUml+PuXt2tEyan0a3TmG1hGzyXkoMq22GTPgM7Ip29mzsy5jXcpBcNxsdvRP6m4b6uyNTWOvOIN3DuyVHSuQxuKxWB7V9aqySIummdJKGufI/ka3o0ANHpJ3XT4YcOdacQtOcJbOq58DX0fp6hVyVOri3TSWrs3ifZQmbnaGxhrJXEhpdufSAmu+ofrHeGvp/I5ahLHWxLtN378dCCzHqKs/J+fJ2TJn48ee2MuIPui8NPMWDYhZyz4SmUqV83mJdEFuk8JqKXT+QynlVhmaW2xXE8cHZ+ezdzC4FzSNyBzAcx5+FHDDX3C+HE6UbLpXJ6LxczmQZKdkwyjqu7nMidGG9nzt3De059iG+53XWy3AjP3+EfEDS0dzGjIag1NZzVWV0snZMhkvMsNbIeTcP5GEEAEb7dduqf3D54QHFLM6R1ZgmYScsx+nGM1HqVrd/Px7phV7M7d+7ZLM2x9NUfcWfz+dvM8JfRWNgyFgYmzpzJWJKkc7uwle2asGPcwHlcQHO2JG4Djt3rDf/drj1jqDXuZ1tk8gbGorbq8dfA5q3Vr+TGRCKCGZjCxsjtjK5wcHN3lcASCd+Thzwf1dgtRcOMrqLIYy5NprTlvBW5KssjnTudJD2MjeaMb/ADOEc+5BDj05h1V13G7lg879Mejfxs79zsrOLB536Y9G/jZ37nZXow9s+k/aWVO1foiLkMRERAREQEREBERBAeEE4t4C8SiACRpnJEAjcfQsnoPerut9DxfgD9Sg/CF94LiX+TOT/dZFd1voaL8AfqQcqIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiIChZ/fOzX4nx/7a6rpQ+ZLMVxAktWXCGHJ4+CrBK87MdLDJO90e/cHFswcBvuQ12w8123s6NtqjfH5iWUdrKoiLexEREBERAREQEREBERAWDzv0x6N/Gzv3Oys4sLa5Mrq/T1Su4TTULL71kMO/Yx9hNE0u+AudIAAdieV5G/I5bKNV58J+0so2r1ERchiIiICIiAiIgIiINf+EL7wXEv8mcn+6yK7rfQ0X4A/UoTwhfeC4l/kzk/3WRXdb6Gi/AH6kHKiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAuC9QrZOpJVuV4rdaUbPhnYHsePgLT0K50ViZibwJd3C7Rr3FztKYVzidyTQi3J/+FfPar0Z8U8J/0+L+VVKLfpGN354yt53pb2q9GfFPCf8AT4v5U9qvRnxTwn/T4v5VUomkY3fnjJed6W9qvRnxTwn/AE+L+VPar0Z8U8J/0+L+VVKJpGN354yXne09meHWlo+NWkabNP4plKbA5iWWo2nEI5XssY0Me5u3UtD5ADsdu0d1G/W49qvRnxTwn/T4v5Vic65w48aMAdsw6dzZLfO6nxjF7H4Ph7+vXp6VfppGN354yXnelvar0Z8U8J/0+L+VPar0Z8U8J/0+L+VVKJpGN354yXnelvar0Z8U8J/0+L+VPar0Z8U8J/0+L+VVKJpGN354yXnelvar0Z8U8J/0+L+VZ3F4ehg6xr46lXoVy4vMVaJsbS4952AHU/Cu4iwqxcSuLVVTP7l5kREWpBERAREQEREBERBr/wAIX3guJf5M5P8AdZFd1voaL8AfqUJ4QvvBcS/yZyf7rIrut9DRfgD9SDlREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQa/zrSePWi3dnu0aczYMmx8355xfT4Ou3p6+b09K2AtfZ6Mnj5op/I4gaczg5x7kb2cX0P3Tt0+8VsFAREQEREBERAREQEREBERAREQEREGv/AAhfeC4l/kzk/wB1kV3W+hovwB+pQ3hAvMXAXiS8AEt01kiA5ocPoWTvB6H/ADVzW+hovwB+pByoiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiINf51oPHnRbtm7jTubG55ub6Jxfd6Nvv9e7b0rYC/nvxc8JnjPpnwwamkMfpvTNjJwSWMVgzNVsubPSuy15GyykTjdzW1o93N5WgiTp3bf0DqtmbWiFh7JLAYBI+JhYxztupDSSQN/QSfvlByoiICIiAiIgIiICIiAiIgIiICIiDX/hC+8FxL/JnJ/usiu630PF+AP1KE8IX3guJf5M5P91kV3W+hovwB+pByoiICIiAiIgIiICIiAiIgIiICIiAiIgndV5u3Sno4zHcjL97ncLErS5kETOXnft9U7d7AASBu7c77bHCOxOded/ZllmHYbhlalt/lvXJ/1XPqj3xdOfivI/taaya6uHajDpmIjXF9cRPbMdvoy2MJ5Hzvx0zHq1H+nTyPnfjpmPVqP9Os2iy6zyx7aeSXYTyPnfjpmPVqP9OnkfO/HTMerUf6dZtE6zyx7aeRdhPI+d+OmY9Wo/06eR878dMx6tR/p1m0TrPLHtp5F2E8j5346Zj1aj/Tp5Hzvx0zHq1H+nWbROs8se2nkXYTyPnfjpmPVqP9OnkfO/HTMerUf6dZtE6zyx7aeRdhPI+d+OmY9Wo/06eR878dMx6tR/p1m0TrPLHtp5F2vcjwcq5bX2K1rbz2Sn1Ri60lOnkXQU+eKJ+/M0AQcp73bEgkcztttyqfyPnfjpmPVqP9Os2idZ5Y9tPIuwnkfO/HTMerUf6dPI+d+OmY9Wo/06zaJ1nlj208i7CeR878dMx6tR/p08j5346Zj1aj/TrNonWeWPbTyLsJ5Hzvx0zHq1H+nTyPnfjpmPVqP9Os2idZ5Y9tPIuwnkfO/HTMerUf6dPI+d+OmY9Wo/06zaJ1nlj208i7CeR878dMx6tR/p08j5346Zj1aj/TrNonWeWPbTyLsJ5Hzvx0zHq1H+nX1uIzjXAnWeXcAd9jXpbH/wDrrNInWeWPbTyLuDTmZvwZg4XKTC9I+B1mtdEYY6RrXNbI2Ro83mBewgt2BDvcjl3dVKFi98zB/irIftaaul4+kUxE01RG2L/Mx+CREReRED4QLgzgLxJcWCQDTWSJY7fZ3zrJ0O2x/Mrmt9DRfgD9ShvCBjdLwF4ksY0ve7TWSa1rRuSTVk2ACua30NF+AP1IOVERAREQEREBERAREQEREBERAREQEREETqj3xdOfivI/taayaxmqPfF05+K8j+1prJrqx9LD9P8AtKz2CmuHGv8AH8T9IVNR4qGzXo2ZbELI7jWtlBhnfC7cNc4bF0biOvcR3dy7Godd6d0jeoU83mqWInvMlfWF2YRNlEQaZNnO2HQOadt+77xXjvGaSq5bgFw1zt2bC5OtjDncn7E8/eNSHLV5LckgmicD0ljYWFji1zR2ve3fdapqtKPcKLyVh5NBcWtdZOzrtrKmloNIYjIaZx2atuhbWqSxSOsTt3f1la5rGmQEuHK3Y9ViuC+nouLmq9BRa+qSZ5knDwzmHJlxFgNyBZBNK3fZ7jE4OBcCd3c3f1UzD03xG4oYnhnToPvwXslkMlP4tj8Tiq/b3LkgaXObGzcDZrQXFziGgDqR0XU4dcX8TxFv5PFx0Mrp/PYwMfbwudq+L2o4378kgAc5r2HYjma4jcddl5r4YZ9unMlwJ1Hqa8RgYoNQadhyV+X5nVnFtzK4fI49C+KuYwSevLsuzx+ydXiDrLiff0zPFl6OE4Z3cfkrtF4li8YlnEscHM3cFzWRyPIHdv8AdKmbtHsVYXRusMVr7TNHUGEsG3irzS+vO6NzC9ocW78rgCOoPeFpLUWSwGtONnBzGMtUczWsaczPjNVkjZWvrzQVWjnaN/NeGvHXv2PwLTuBwGjcb4F2ENWvi6V65lcSzPPgc2KZ3Z5VrD27mkOBaC4bnbbqrm1j3Si8XcUsVgsHkeLWB4diu3Tj+Hdq5l8fiZO0qQ3hLtC/laS1krou2JA2Ja0Ej0nZWoslgNacbODmMZao5mtY05mfGarJGytfXmgqtHO0b+a8NeOvfsfgTMNhZ/jvpvC8JWcRa0d/N6fldCyuzHwDxicy2GwM5WSuZ3vcPdEdPzLtaD4o29b5eajPoLVulmRwGcXM9VrxQPIc0dm0xzyHnPNuBtts13Xu38oYnT2m6HgM1/IUdDGagu3cUzKT0Wx+MiZmWjY10o67uYSduYLcnHvSeZ0r4OGt25jV2S1c4mrYE+Rr14jXjZZic/YQRsBGwLiSD3KRVO0ehkXlbj5ncbmOJGrY6F+tdfDwjzz5G15WycgfJAWE7HpuASPhXCNOx8NtR8Lsloyka2dz2lcobpa90j8nPHShmhdMXEmR4l7nO3PnEb7K5h6vUrR4kYvNaAsavwkF7PY2OOxJFBj6znWbJhe9jmRRu5SXFzHAA7b9PhWmvB20jwtzOjdIZ91jH5nW+ZxxGQuXb5kvXLMkB8cilY5+7uXeUGMghob0A23WstO6H0O3wHtceL4jENzzaGTkvtjjYLAmrWbAgMgHnAx7jl37txt3pmke16s/jVWGbs5Ie0YH9nK3le3cb7OHoI9K5V5RuYfR2sOI2vIuKFqBtPC4HGS4OO9aMLatV9Zzp7Nccw+adsHAyDdw5GDcdxx3CrTreLmsuH0fEOi7NTTcNYrVitkC4tmk8bDWSys32e7kdzbuB2Lie/qmYev1qbV3hF43SWss5p1uktV5yXCV4LWRu4ajFYgrRzNc5hcO1Eh6Mfvsw+5K87HDQZfgvoLUeau4rU1fTVXNRyaU1Fk3V3XasNx8bZ4JN9+3iZExgc4EecBu07FV+lK+q+IvF7iBY0Bn6ekMXk9PadllkyeMdbtRwy1rBi7Mdq1rXtaXb83NuSPg6zNM7B6g0xqXG6y07js7hrTb2KyEDLNawwEB7HDcHY9QfuHqD0Kya8N8XdCadwuI1NpjF18Ji5OHOl68UWoM/anOQmldFJLEabI5Y2xv5v8AxOvM9wbykN2Ww8TpTEcXeOWmZtVVY89Wm4a0rklaweaCeV9lx53s7n7cziN9wCdx1AIubsHqFF5HrQ1OF/GDNSUocVrHUmpLOZkwmeoXjJkKdpkEkho2oOYgxs5DG0jo0tALGk7rE8BdAt1JHw61dU15pWrqGzNDcvSVq1gZnJPDC63UsPfdcJHbCQOHZbNLeZrWgAJmHs5F5/8AA+0Dg6PDahqltBkmobVnKQvyEu75WQ+UJh2TCfcs+ZtPKNhzbnvJXoBZRN4uMRF75mD/ABVkP2tNXShYvfMwf4qyH7Wmrpa+k/o9PzKz2CIi8SNf+EL7wXEv8mcn+6yK7rfQ0X4A/UoXwgwHcA+JQJDQdM5Pqe4fOsiuq30NF+AP1IOVERAREQEREBERAREQEREBERAREQEREETqj3xdOfivI/taayaxup2n2w9Ou6beTMg3v9Jlp/wKyS6sfSw/T/tKz2MTqTSGC1lTjp6gwuOzlSN4lZBkqkdiNrx3ODXggH7q62c4f6X1PVpVszpvEZatSAFWG9RimZX2AA7MOaQ3oB3bdwWfRYWRgtQaC0zq1tNuc07icy2md6wyFGKcQHp7jnaeXuHd8CyDcJjmZVuTbQqtyTa/ijbghaJhDzc3ZB+2/JzAHl3236ruogwz9F6ek0+/AuwWMdg3lxdjDTjNZxc8vcTFtyndxLj06kk965cFpXC6WxfkzDYehiMbuT4nQqsgh69/mNAHX7yyiIJzCcNtI6ZtQ2cPpbC4qzCZHRTUcfDC+MyACQtLWgjmDW823fyjfuUxxE4D6c1thLtKjjsXgbd/I079+7XxkbpLnYWWTlku3KX8/IW7uJ25t9j3HZSJaBhtPaL09pGjNTwWCxmFpzuL5a+OpxwRyOPQlzWAAn766uE4baR0zahs4fS2FxVmEyOimo4+GF8ZkAEhaWtBHMGt5tu/lG/cqNEsJs8NNIGXIS+xXCdpkZWT3X+Tod7UjHh7HyHl89zXgOBduQQCOqz9mtDdrS17ETJ68rDHJFK0Oa9pGxBB6EEehcqIJjHcLdF4iCaGjpHA0oZq0tOSOvjIY2vgl2MsTgGjdj+VvM09HbDcHZZf2O4rxjG2PJlPt8Yx0dGXxdnNVY5oa5sR23YC0AEN23AAWQRLDAUeH2lsZqCbO09NYipnJiTLk4KETLMhPeXShvMd/TuV+Tw60m6xl5zpjDGfMMdFkpDj4ua6x3umzHl3kB9IdvuqFEsMDntAaX1S+k/NabxGXdS+hXX6MU5r/wDL5mnl7h3bdyyQwuPGWGVFCsMmIPFRd7FvbCHm5uz59ubk5hvy77b9V3EQTF3hbovJVKdS3pHA2qtJ75KsE+MheyB73l73MaW7NLnEuJG25JJ6rNVMHjaGRuZCtj6te/cZGyzaiha2WdsYIjD3AbuDQ5waCenMdu9d1EsMJldD6czuYrZbJafxeQytVvJBetUo5Z4m9ejXuaXNHU9AfSubGaTweEsQT47DY+hPBVbRikq1WRujrtdzNhaWgERgkkMHQHrssqiDB47QmmsRnbOboaexVLNWt+3yNelFHYl3O555A0OdufhK/FHh/pfGagnz1PTeIqZycky5OChEyzIT380obzHf7pWfRLDp4nDY/AUGUcXRrY2lG5zmVqkLYo2lzi5xDWgAEuc5x+Ekn0ruIioxEXvmYP8AFWQ/a01dKGhG/EvCkbdMVf369f8Ai1FcrT0n9Hp+ZWewREXiRr/whfeC4l/kzk/3WRXdb6Gi/AH6lC+ECWjgLxJLwXM9jWS5g07EjxWTfY7Hb8yuq30NF+AP1IOVERAREQEREBERAREQEREBERAREQEREGI1Dp9ucjrvZO6neqvMle0xvNyEjZzXNPRzHDoWn7hBDg1wwBwGrwdhlMI4D0mhMN/u7dt0+9uVbL8SSshaHSPaxpIaC47DcnYD75JA/wA16KMeuiMsbPGIlbozyDrD7Z4P1Gb5ZPIOsPtng/UZvllla+s62UkgGIqWsxC66+lPZrNayGsWDz3udIW8zQfN3j5yXHbbo4j80qOo8iMdYyl6viXxPnNrH4s9vFM1wLYmmaRjXeaDzEtawl23oBDtmlYm6OEF2AyNfUeJjc+5nNP1wI3y7PpzcxawczyB2252HU7LGVrGucs+M4yLHS1J8eLsGQu0Za0DnuOzYXMdN2zH7ecd4tgNuu/QXmF0hicE2o6vVM1qrAa0d+5I6zb7Mu5nNdPIXSOBd1O7juVmU0rE3Rwguh2YHWRY3nyWCD9vODaUxAP3Pmq/XkHWH2zwfqM3yytkTSsTdHCC6J8g6w+2eD9Rm+WTyDrD7Z4P1Gb5ZWyJpWJujhBdE+QdYfbPB+ozfLL55B1gP/aeD9Rm+WVup/MTPzeV8hQ9vBFGyOzemfSEleaBznN8WD3+aXP5TzABxazffkMkbk0rE3Rwgul8FBq/PVDegyem5cZPyS0LlWKSdluBzGubKC2XlAcSeXYu3byu3G+wyXkHWH2zwfqM3yytGMbGxrGNDWNGwa0bAD4F+k0rE3RwguifIOsPtng/UZvlk8g6w+2eD9Rm+WVsiaVibo4QXa/yWH11Xq9pTs4G5MHs3hfWmj3YXAPIPanzg3mIB2BIAJaDzD7jqWpcxj616hndO3qNmNssFmtVlkjlY4btc1wmIcCOoI6FX6nWPOms5FW5Z5MblZi2tFWpN7KlMGPkk7R7O5smxcHPG3aEgv3kjamlYm6OEF2L8g6w+2eD9Rm+WWKzUOtsHHPclmxFnGQV3Syvp461Pa5g4dGQMeXSDlLj5pLvN2DXEhbLRNKxN0cILoaHD6ssRh8eVwT2nuIpTfLL9+QdYfbPB+ozfLLN2dLQtyEl/GS+R71m1DZvTVoWHx4Rt5OSUEdd2bN5xs4cjOuzQ1fmhqXlt08dmIo8Xl7bpxXriXtGWGxO6uY/YAksLX8h2cBzdCGkppWJujhBdhvIOsPtng/UZvlk8g6w+2eD9Rm+WVsiaVibo4QXRPkHWH2zwfqM3yyeQdYfbPB+ozfLK2RNKxN0cILonyDrD7Z4P1Gb5ZG4HV+43yWEI9IFGb5VWyJpWJujhBdgdPaakxliW9fttyGUlYIjNHF2UUbB15I2czuUE9SSSSdtzs1oGeRF5q66sSc1SCIiwGv/AAhfeC4l/kzk/wB1kV3W+hovwB+pQvhBkN4CcSiWhwGmckeU9x+dZOnRXVb6Gi/AH6kHKiIgIiICIiAiIgIiICIiAiIgIvjnNY0ucQ1oG5JOwAU3BrIZ6rDLpqqM1Xt0pbVTKdq1mPe4HljY6UbuIe7qHMY8coLvS0OClWAzGtsZivKcMUj8tk8dHFJYxOLAsXGCV3LETE07tDiDs52w2a4kgNJHDNpW1noJmZ7JTT1rVGOtYxlJxgriTvke2Ru03nHzdi/blG23Uk5+tUgpx9nBCyFnQcrGgDoA0fmAA+8Agwl5mpMnLkq1d9PB12SwipfBNqaaPoZt4iGtjP1LTzP9LiO4LkGi8VLaksXYXZaU3m5GE5J5sNqzNbysdA1+4i5QTtyAd5PeSTl7dptOu6Z4Ja3bcN7+/ZY72S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FBl0WI9ktb63L+YfxT2S1vrcv5h/FByaiylnE4uWShUjyGTeCynRlstrixLsSGl7t+UbAucQHENa4hriNjy4fEQ4So6vDJPNzzSzvlszOlke+R5e4lzj3buIDRs1rQ1rQGtAE5WyMdzUE2SvVqs0df5ni3xw7zwsc1vbFzyehc4bbNA81g3J5thmvZLW+ty/mH8UGXRYj2S1vrcv5h/FPZLW+ty/mH8UGXRYj2S1vrcv5h/FPZLW+ty/mH8UGXXTzGKhzmKt4+w6ZkFqJ0L31pnwytDhtuyRhDmOHeHNIIIBBBC6nslrfW5fzD+K7lDIx5BrzG1zeUgHm2QdbT9+5cqysyFTxK5BNJEWduybtIw4iOXdoG3O0B2xaCCSNum5yimdRMi0/mK2oh5LpQkMqZa9dc6OTxUdoYQ146EtmkGwf0AlkIIPR1MgLr36EGUpWKdqMS1543RSMJI5muBBG46jcE9y7CIJ0zXdK83bmbJYcGtXriKN81qDfzHvmeXEyN35HF+3MN3l24G4oWuD2hzSHNI3BB6EL6pyxjnaTbNcxNceTGNs2rWJqQc0k8z3CQyRdQA8u7Qlu3nukLtwd+YKNF+YpGzRskYd2OAcDttuCv0gIiICIiAiIg1/4QvvBcS/yZyf7rIrut9DRfgD9ShfCCeY+AvEl4AJbprJEcwBH0LJ3g9Crqt9DRfgD9SDlREQEREBERAREQEREBEXWv5CvjIBLZmZC1z2xs53AF73HZrG797idgB3knZBzTTR14nyyvbFExpc97zs1oHUkn0BYM6guZK0YcPQMrK18Vbli+JKzGxhpdI+Hdh7Yg8rBts3cu87zCDxw4SXUsIsaggBrWIICcBYbHLDWlY/tOZzgDzyBwZ13LR2Y5e8udRoJ+jpCLt6NzL25c5k6Us8te1Ya1gh7UcpayNgDdgzzASC7lLt3EucTQIiAiIgmeJmSvYbh/qDIYun5QydSlLPVqH/x5WtLmM/8AU4Af5ryvw08IzT1Gzps6j4u4/UljUdQOdUEdOtDi5xGJHB7mlr4wd+za2TmcXenvXp3jHpqxrLhXqvAVLPiVrKY2elDYJIET5GFjXHbrsCQei8mw6Y4gwZThpcHB+vG3R8M1W1BXy9EMuh9YQtfDu4bNaWh2z9jsdhuUG1dU+ELh9L5nVOPdp/UWTGmOzfl7ePpxvgqxPgZMJS50jS5oY47hoLxyOPLtsTP5jjnkMBxfzFGHF5vVenG6doZOtVwFGOd0RklnD5iXFjiHNbHs3ck7Hlb3rsW+H2orVjjxKMbyjVFKKPFNM8fzw8YxsJb7rzdpAW7u2Hp7uqwWB09xA4catgzFDRDtRxyaQxOHfFHla1d0VqDti8O53dWDnALhv6OUO67BaW/CO03IzA+QcfmtXy5nHPy0EOCqCWSOq14Y6R7XvZts88vKN3cwI5Vy6g490cHqTP4aHSupszPgYYLGQmxlSGSOGOWMvafOla5xAB3a0F3Q7ArVOY4K6o09ws01gMfpN2Z1fSrXLNbVGHzEdB+Jv2J3zOaOctc+AOk2IHMHBvVm53Hbw2d11pzi5xPrYfSzNYZyXH4WOzaZehqQRWRUeOd7ZCCYy4uPmAnYbbdUH3iDxlOW4o4Srj+Llbh/o7I6WizNW7LXpObblfYc0AGywkHk2PKCNuXu71ZUNSaiwPEfhdp+TWD9VY3NY7LXbV99StH46GCu+u4dkwABoldsWbcwO53WF4TcB8hoHW+mo8jTr5PD4vREWHkvPLHsddFt0r2tY48+2ziQ7l226b79Fcaq0dlL/G3h1naVIOwuHoZWvbma9jRC6ZtcRNDCQ479m/3IIG3Xbog07g/CV1FnfBn1XlbMwxOv8PinXYbPYxltuDtCyO3GwtLCN2uY4bbB7T0ALVX8QOK2r9Oao4oV8M3yo7CaWp5LG47xdrw2w904keeUB7htG08u/wBT023UpnfBpz2qfBaxGnxF5G1/iaVqKBomjcJWSyPMlWR7SWFkjeQ9+zXtY7ccpWyhp3U+B4u661Xj8EMnFPp6hVx8T7ccLbdmJ87nx8xJLOkjPOc3br032KCM1BrjUmm/B21nrjD8U4dbyNoxTY6/DjakbacocBIOVjSDuHAckjeZu3XcnpntceEJgchqPh5i9Ea2w2Ts5LUsFTIVcdagtSPpmCcvBHnFo52xecNiDsN+vWA1pwf1vrzE8T8tT0RX0fY1BgocdHp+HIV5JMhcbP2htSuYRE0hhLAS7mI3326Bbe4r8Op81l+HNnA4esfJWqK+QvSQiKIxVm17DXO6kF3nPZ5o3PXu6FBrfLeEANM6o1dktV8QoNPM09mpKjNEw1qpnuU28nZyAyESudIHh/M1wa0bjboVtfUHHPT+JsaagxkF7Vsmo4rUuMOnmxWWWPFzGJB2hkawf8T3RIb5jgSDsDpPWvCfXkWluJGkMdoarnjqLNWMvS1KMjXiAbLMyURyskIkDmhnZgtBBG3cAtoxYLUmpeI3DHUlnSrtN1cXVy8V+m63XlNR0wgEI3jcQ7n7Nx8zfb07IMNrHj/LNT0Bl9OVssa93Us2HyuFbSjdeLooLHPWLHEhrhJGw7teBsN+bl3VAPCT0y3Tl7ITY7N1cpSyUGIm07PTDckLc5HYxiPn5Dzg7tdz8pAPndFA2OGet8PerZWlpvynLT4iZHUIqC9BE6alLXlYx7XOdsHEvGzTsd+/lHUZCTh/qHOs1/qfUvDyHMTanlx9ZukfKkLZoa1VrwJjY3Efbc0jnANcNgG7P3QXWV451sRHpiObSOqDlNQyWoqmIFSFtpjoBu/tA6UNaCBuHBxaR13AIK2FwX4i43iNisrPSr3cfax9w0r2OyUPZWakzWh3I9oJHVrmuBaSCCNivKza+u9Dak4QDLYq3qDMxZHPPo4ifJxSXIqTq/zKKSy8hkkjGd7i7r0HMvQ/g5aXz9CzrnU+p6EOHy2pspHbGKhnbP4pDFXjgia97fNc8iPmdy7jr3oNwXqVfJ0rFO1DHYq2I3RSwysD2PY4bFrmkEEEEggjYrEaLzDsphjDYyMGUymPldRyE9aF0LTYYBz/ADN3Vu+4dtuRs4bEjYrPKdgyBp69s46xl+18foNt08WanL2QhfyTyCYDZ4cZq45D1btuNw7ZoUSIiAiIgm8lCzSM0+XrMrVsU90lrLtEUr5DszpNG1m45t2+cOTdwPNzAs2dQwTx2YY5oZGyxSND2SMILXNI3BBHeCv2sFiRYxOas4x4yV2tYEl+G9ZLHxREvHNXDhs4cpcHNDt/NJAOzNgGdREQEREBERBr/wAIX3guJf5M5P8AdZFd1voaL8AfqUL4QT3R8BOJT2OLXN0zkiHA7EHxWTqrqt9DRfgD9SDlREQEREBERAREQEREBTNaxFnta3mOnoXIMGImsr+Ll1ipcfG8ukMjujd4JWNAb12kfudnAKmU9pu2bGf1ZGchUuCDIRRiCvFySVAald3Zyn6t55ucH+zIwehBQoiICIiAiIg62Rquu1HwtIaXbdT9/dYb2MzfXo/9VRIgnfYzN9ej/wBU9jM316P/AFVEiCd9jM316P8A1XTraBrU8hcv169OC9dDBZtRwhss/ICGc7gN3coJA332B6KuRBO+xmb69H/qnsZm+vR/6qiRBO+xmb69H/qsZp2hPnMWLhr2sfzTTM8XyERjlHJI5nNy9dmu5eZvwtc09N1aqe0Ax0ekceHjLh2zyRnXh1wbvcfmhH+n93ZB89jM316P/VPYzN9ej/1VEiCd9jM316P/AFT2MzfXo/8AVUSIJ32MzfXo/wDVPYzN9ej/ANVRIgkbOga12/SvWK9Oe7SLzVsywh0kHO3lfyOI3bzDodttx0Kz2Ixz8cyQPe1/MQfNWQRAU7qe/wCS8zpqZ+TmpV5rrqbqsdftGWnPieWNe7vj2cwEO7t/NPulRKd15eOL0+255SnxTILtR8k9ev27nR+Mx88RZ/Ze0lhcOrQ4u+pQUSIiAiIgLAazxr7eIF2tjvKuVxTzfx1Xxs1e0sNY5rW9oOjQ5r3sPMC3Z53Gyz6IOOvMyzBHMwhzJGh7SCCCCNx1HQ/5LkU3oWq3E4y1h46lGhXxdqStXrUZu0bHB0fEHA9WO5Ht8w93TbzSFSICIiAiIg1/4QvvBcS/yZyf7rIrut9DRfgD9ShPCEcW8A+JRBII0zkyCPR86yK7rfQ0X4A/Ug5UREBERARFLXeINWG1LDSxuSzAicWPmpQt7IOHQtD3uaHbHoeXcAgg9QQNlGHXiTamFtdUoo/2xJPitnf0df5ZPbEk+K2d/R1/llu0bF3fMcy0rBFH+2JJ8Vs7+jr/ACye2JJ8Vs7+jr/LJo2Lu+Y5lpUGoM9R0tgclmsnMa+Nx1aW5ambG6QsijYXvdytBc7ZoJ2aCT6AStG8MvC+4Va515cweF1pHmsjm7zDjKNXA3YntYK8TXNkkMADjzRyO53EANIBOzVs6xrwW4JIJ9JZuaGVpY+OSKu5rmkbEEGbqCF5c8GfwbIOA3GDWerpdO5S5Une6DT0TGwukq1nnmf2m8g2eBswEE7gO+HZNGxd3zHMtL2uij/bEk+K2d/R1/lk9sST4rZ39HX+WTRsXd8xzLSsEUf7YknxWzv6Ov8ALJ7YknxWzv6Ov8smjYu75jmWlYIo/wBsST4rZ39HX+WWYwOqamffLDHHPUtxAOkqW4+zlDT0DgO5zTsRzNJG4271hVgYlEZpjUWlmERFoQREQEREBERAU7w+Z2ej8c3/APGOjX/TAd7vu3f8X7vwfc2WA448bMNwC0SNU5+hlL+MFplWQYmBkskReHEPcHPaAzdvLvv3ub06rXngueFJo/jg6zpzSlLVcnkiqbE+R1BHEQeaTZrHStkcS88xIG3uWHr06h6EREQEREBERAREQFO8RLnk3QWobvlKxh21KE1l1+pB28tdrGF5eyP6sgNPm+nuVEsRrCY19JZuVt6XFuZRncL0EXayVyI3HtGs+qLe8N9JGyDLAhwBB3B6gr6uniLLbmJpWGTOsNlgZIJnM5C8FoPMW+jfv2XcQEREBERBOY6HxLXeZa2vjYYrlStZ7SF+1yeVpkjkMrPSxrGwBrvuuB7gqNTtyLsuIGJmEGMAmxtuJ88r9rxLZIHMZGPqotjIX/A4R/CVRICIiAiIggPCCY6XgLxJYxpe92mskA1o3JPisnQK6rfQ0X4A/UoTwhfeC4l/kzk/3WRXdb6Gi/AH6kHKiIgIiIMfqGxJVwGTnicWSx1ZXscO8EMJBUxpWJkGl8RHG3lYynC1oHoHIFR6q+ljMf4Ob/YVPaa+lzFf4SL/AGBdHB+jPr+F7GSREWSCIiAiIgIiICIiAsNdcYtb6Vc3o6SSzC4/CwwOeR/8UbD/AJLMrC5H6dNI/wCJsfu0i2Ufq9KvtKwvURFyEEREBERBxWrUNKvLYsTRwQRNL5JZXBrWNHeST0AWvcnx1wNWYx0KmRzQHTtqkTWRf5OlczmH3W7hQOvdaya5yckcbz5CrSFteEe5sOadu2d8I3HmjuA2d3npPL6/of8ARqJoivpG2ezd6l7K3iPxBw3E3Q2c0rl9L5GTH5Wq+tIe0gJYSPNeAX97XBrh91oWtfBMxlHwa+HEuFlwdvI5y9ZdZyF6B8IbIR0jY3d4PK1vw+lzlnUXR/0nofd+ZM3g2vW494sytbbwuWqRnvmDIpmt++GPL/zNKvsFqHG6moC5i7kV2uTyl8Z6td6WuHe1w3HQgELzNLZhhkijklZHJKS2NrnAF5232A9PTqu9hszd0vlBlMYQ20ABLETsyywf+G//AF2d3tJ3HTcHx9I/ouFVTM4E2q+C8S9OIsfp/OVdS4WnlKZJrWoxI0OGzm/C1w9DgdwR6CCsgvjaqZpmaatsAiIsQREQFj9QymDAZKQWn0SytK7xqOPtHQ7MPnhv1RHft6dlkF0s1L2GHvyCw6pyQSO8YaznMWzT5wb6SO/b07IOHTFoXtNYmy227ICapFILb4+zdPuwHnLPqS7ffb0b7LJrE6TtePaVw1nx1+S7alDJ47JD2LrG7Ae0LPqC7ffl9G+yyyAiIgIiIJ3Nxf8AbDTUwgxjiBZjM1p+1pgMYO1cencsHOPgaD6FRKd1BDz6n0tJ4vjZeSxP81tv2sRb139a49Lj3OH9jmPoVEgIiICIiDX/AIQg5uAfEsfDpnJ952/8rIrut9DRfgD9ShPCF94LiX+TOT/dZFd1voaL8AfqQcqIiAiIgxeqvpYzH+Dm/wBhU9pr6XMV/hIv9gVDqr6WMx/g5v8AYVPaa+lzFf4SL/YF0cH6M+v4XsZJeFdMaBwmhPBAo8WNPQeQtd4pkmQGVqyvYbZbdc0wztB5ZGPZ5ha4ekL3UvPGlfBUy1LTWF0lqbiA/P6HxVoW2YKpiGUhZc2YzMZYl7SRz2B535Ry77DfuWNUXR2c5xq15kYte57SmJwR0zoqaWtbq5UzeO5GWCFs1lsT2ODIeUP5WlzX8zgd9gshX4u6u4napvYzhxBg6uPxePo3LmQ1HHNJ2sluETxQxxxPby7RFpc8uOxeAGnZc2q/B8yeXu6urYTW0+ndM6vlM2axTMeyeRz3xtimdXnLh2JkYxodu1+x3I2XavcC8ng9UWM1w+1b7DTdo1qF+lPjGX4Jm12dnBIwOewskazzN9yCA3dp2T+4av4gZrJ8MdU8TtO13RQ5jX2MoW8SysT2bclO5uOsmPfqdnOry/e3JWGwWr8lqhnD7BXOSxluGmJyuWzMM4JY67RD6NQv2IJ5ndpL3jcDoV6J1Jwgoau1Vw+1FlrTrmV0hJNLHM+Jo8ZdJD2bi4DYN88MkGw2BbtsunX4GYmhn+JeZpTeL39cVo69l3ZbiuWQOi5mjcb7lxeR03P51MsjU2ttaa+1H4OmM1hqSnpKfFZU4S3JhW1bfMI5rEI37ZthuzueSGRo22byuaef3Sq9OZLWj/Cf1/A7O472MUMdi5paVirO9zIXi0R2J7YMjk5mkvdyEOHKOUcu5rM7wX8tcDcRw68sdj5PrYuv5S8V5u08Tlgk37PnG3P2G23MeXm9O3XmyXCvJt4ryazwmpG4uHIVa1LM4uxj22WXYoHvczkeXtMTuWV7SdnDYg7bhW0jUWmvCr1RqexiM1RwAvacyd2OKPE18BlTdjqvl5BYNwxeLOIaRIWDZuwIDyR12Nwr15rniFqvU77MeBoaXwWob+G5GQTOuW2Q7hjw7tOSMglm5LXc2ztgzoT+uHnBfUfDOejisRr2T2C0bD5a2CnxUb7EcTi53i/jRduYwXdPM5gABzbKs4b8Pva+j1Izx/x/yznbma37Hs+x7dwd2Xujzcu3uum/wBIie0V6wuR+nTSP+Jsfu0izSwuR+nTSP+Jsfu0i9FH6vSr/AIysL1ERchBERAU5xGvzYvQGo7VZ5jsRY+d0Tx9S/kPKf8jsVRrH6hxEeoMBksXK7lju1pKznbb7B7S3f/VbcKqmnEpqq2RMLG15mggZWgjhjHLHG0MaPgAGwWqOOHGx/DPIYPD0n4ytksr2knj2Zc8VKsTAN3PEfnOLidgB/mtrVxPGx0NtnZXYHOhsRn6mRp5XD724Ox9I2PpUPxG4Xzazy2FzmIzs2mtR4gyNrZCKBthpjkAD2PjcQHA7fD06r9K6R1lWHPVTr1cL6/hh262r63hM5nJaKktY+nhrucrZ+thpJIXymjZZNvyyRuOz277bdQdtu477Cnh40ZrSF3WeO1rSx0lzA4xmXimwpkbHYicS0M2kJLXc+w33269w265zN8KMtqjSWGxWa1W/JZChmIcq/IuoMZ2ojeXCIRtcA0ddgdzt91c2f4N09Tau1JlshddJSzeFbhpaTIuV0YDi7tBJzHr16Dl6EenuXiijpUa76/23TtjX227Rq1+X1rnuLXB3Jarq4WlWuPvWKVfGOldNE11XctmL/NJ2Lerem+69KrTmneBOexuptIZLLa8lztPTBmbSpy4yOJ3Zvi7PldI1+5IHL5xB35e4bkrcTnBjS5xDWgbkk7ABejolFdMVTXE3me219kR2eMDbPASzI7T2ZqudvFWybxEP7LXxRyEf/G95/wA1s5QnBjCS4jRTLM7HRT5SZ19zHDYta4NbHuPQezZHuD1B3HoV2vhOn1U19KxJp2XZztERF4EEREBdPMzeL4e9L27qvJBI7t2M53R7NJ5g30kd+3pXcXRzk/iuFyExsOqCOvI/xhjOcxbNJ5g36ojv29OyDr6StePaUwtkXZMkJqUMnjssXZPsbxtPaOZ9SXb7lvo32WWWK0pYNvS+HnN1+SMtOF5uyRdk6xuwHtCz6ku7+X0b7LKoCIiAiIgntQQdrqTS8nYY6Xs7Mx7S27aePevIN6436uO+zv7hcqFTuoaxm1LpWQUqVkRWpnGezJyzV960o5oR9U478pHoa5x9CokBERAREQQHhBBp4C8SQ8lrPY1kuYtG5A8Vk7huN1dVvoeL8AfqUJ4QvvBcS/yZyf7rIrut9DRfgD9SDlREQEREGL1V9LGY/wAHN/sKntNfS5iv8JF/sCrcjTbkcfZqPJayeJ0TiPQHAj/6rXlHUEWmKFXGZqOxTu1ImwucK0j4peUAc7HtaWkHbfbvG+xAIXR6PE14c0U65uyjXGpUIp72f4P7Kl9Vm/kT2f4P7Kl9Vm/kXo6nF7s8JMs7lCinvZ/g/sqX1Wb+RPZ/g/sqX1Wb+ROpxe7PCTLO5Qop72f4P7Kl9Vm/kXFFxJ05PJNHFkDJJA4MlYyvKTG4tDgHDl6Hlc07H0EH0p1OL3Z4SZZ3KZFPez/B/ZUvqs38iez/AAf2VL6rN/InU4vdnhJlncoUU97P8H9lS+qzfyJ7P8H9lS+qzfyJ1OL3Z4SZZ3KFYXI/TppH/E2P3aRcHs/wf2VL6rN/Iu1h436o1JjclBDNFjcaJXiexC6IzSvbyBrGuAJaGueS7u35QN+vLclWHE1VxaLTt8YmCImNq6REXFYiIiAiIg13xH4YnUMz8vhzFDl+UCaGTzY7bQNhuR7l4HQP2O4AaegaW6ayhnwEhizFK1iJAdj43EWsJ/uyDdjvvtcQvVKLu9E/q2L0amMOuM1MbOyeK6p2vI51NiGkg5SmCOhBnb/FfPZPh/tpT/Tt/ivXKLo/69T/AOL/ANv/AJS0PJ1XKV8hKIqJkyMx6iKjE6d5/wAmAlbK0Pwmt5SzHe1JVFWgwh8eMkIdJOQdwZdiQGenk6l3c7YAtdudF4+kf1rFxacmFTlv23vP7bF1RsERF86giIgIiICxOrbzMXpXM3JbrsbHXpTTOusi7V1cNjJMgZ9UW7b7enbZZZTvEPIHGaHzc7MnNhZjVfFDka9bxmStK8ckcjYu55a5zSGnoduvRBlMGXHC48vsvuv8Xj3syM5HSnlHnlvoJ79vRuu8vg6BfUBERAREQTmoqom1NpSXxKlYMNqZwnsTcktfetKOaFv1bjvykehrnH0KjU5qOBsmptKPMGOlMduciS3Lyzxb1pRvXb9U477OHoYXH0KjQEREBERBr/whDy8A+JRG240zkz1G/wD5WRXdb6Gi/AH6lCeEIObgHxKA23OmcmOp2/8AKyK7rfQ0X4A/Ug5UREBERAREQEREBERAWveG4a3X/FcDfmOerOO/4poD/wCi2Ete6M+c+LvEamQGunbjcmBuNy2SF8AO3f31HDc/AfgQbCREQEREBERAREQEREBERAREQEREBERAREQEREBERAU9q649smDx8GRsY21fyUTWPr1u2MjYt55Y3HujY+OF7C893OAPOc1UKn6L5cpq27ZD8nWrY2M0RXmi7KrZe8RymZm/WTlHKwO9yCZANzvsFAiIgIiICIiCd1FD2mpdKv8AFsbN2dqY9rcftPF87SjeuPS877O/uF5VEpzUUPaam0q/xbHTdnamPa25OWeLetKN64+qcd9nD+wXH0KjQEREBERBr/whfeC4l/kzk/3WRXdb6Gi/AH6lDeECWjgLxJLwXM9jWS5g07EjxWTfY7Hb8yua30NF+AP1IOVERAREQEREBERAREQFr3Uzm6W4r6dz0m7KGZquwFqXm2ayfn7aoXdOgJ8YjBO3nSsHe4LYSxWqdNUdY6evYbIte6pbj5HOidySRncFr2OHVr2uAc1w6hzQR3IMqij9JapuRZE6Y1K+OPUcEZkhsMZyQ5SuCB4xD6OYbtEkXfG4jvY+N77BAREQEREBERAREQEREBERAREQEREBERAREQEXUv5Wli3Vm3LcFR1qZteATSBhllO5DG7nznHY9B16FYaG9lNUw15KcUuFxc7LMc8lyEx3wfcRPiYdwzfq/eQEgBoLPOPKHbyGZkmvSYzFGvYyMRhdba+bkNWGQuAk9y7mdsx/K3bqQNy0dV3MNia+BxNTHVe1NerE2Jjp5nzSOAG275Hkue495c4kkkkkkr943GwYmlDVg7QsjY1nPNK6WV/K0NDnyPJc92zRu5xJO3UldpAREQEREBERBOaih7TU2lX9hjZeztTHtLj9rEfztKN649Lzvs7+4XlUandRRc+pdKu7DGSclqY9pdftYj+dpRvWHpee539wvVEgIiICIiDX/hCAngFxLAG5Omcn0/8AdZFd1voaL8AfqUJ4QvvBcS/yZyf7rIrut9DRfgD9SDlREQEREBERAREQEREBERBidTaXoatxop32PHI8TQWIHmOetKAQ2WJ46seASNx6CQdwSDM0tW5HRNqHF60nikqyObFT1O1ghgsOc4NZFZbvtDOSQ0EbRyO9zyOcIheLhu0q+Rpz1LcEVqrPG6KaCZgeyRjhs5rmnoQQSCD3oOZF/Pnw1PCayvAqe1ww0HmMiJSa9qxbsCRsmGbzMmZWrWA5rpGvAaSH84Yx7mBxDgyH2PwH4rU+NfCfTur6hYH3q48ahaf+DYb5srNvRs4Hbf0EH0oL9ERAREQEREBERAREQEREBFxzzx1YJJppGQwxtL3ySODWtaBuSSe4AelT511RuMd5Fhs6hkfjjkqzsfHzVrUe/KxrLTtoC5x7mmTfYcx2b1QUi4rNqGlXknsSsggjaXPllcGtaPhJPQBYCxX1LmGTsFqvp+vPSYI312Cxbr2Sd3nd4MRDR0G7Xbnqeg2PM7ROKtTXZchFJlzcZAyePJSungd2RBYWwuPZsPMOYljRu7YnuGwfi9rOvFJk62No3c5kcfJBHPTpRBpBl2LdpJSyM7NPM7Z5LRt03LQfs9XUWUlsMdcrYSvHdjdBJT+eJp6zermv7RgbG556dA7Zvcdzu2gRBisZpnH4qaeaKOSaea1JcMtud9h7JHgB3IZC4sbygNDG7NAGwACyqIgIiICIiAiIgIiIJ3UUXPqXSruwxknJamPaXX7WI/naUb1h6Xnud/cL1RKd1FFz6l0q7sMZJyWpj2l1+1iP52lG9Yel57nf3C9USAiIgIiINf8AhC+8FxL/ACZyf7rIrut9DRfgD9ShPCF94LiX+TOT/dZFd1voaL8AfqQcqIiAiIgIiICIiAiIgIiIMNrHNS6d0vk8lAxklivC50TJN+Uv7m823Xbcjf7ilXaHxls9rkRPk7juslmzO8ue70kAHZo/utAA7gFmeKP0g5j/AJbf97Vzrp4EzRhZqZtMzP2jmy2RqS9vhhpa/EYrWGgsxn6iYucPzErjx3CnSWIhdDQwValC53OY6/NG0u6DfYEdeg6/cVYi3dfi96eMmad6d9r7T/2ub+lf/Mntfaf+1zf0r/5lRInX4venjJmnenfa+0/9rm/pX/zJ7X2n/tc39K/+ZUSJ1+L3p4yZp3p32vtP/a5v6V/8ye19p/7XN/Sv/mVEidfi96eMmad6d9r7T/2ub+lf/Mntfaf+1zf0r/5lRInX4venjJmnenfa+0/9rm/pX/zLoZvVmH4LivlMplG4rS0vastuuzPfHXc2KSVr2bkkE9m5nI3fmLmBo36GxUhr7TGJ1lf0nh85jq+VxVnKPE1S1GHxybUrLhuD8Dmgj7oCuerEiqmubxadvhEyRMztaL8HTw8fb08IPOaVbh31NPXKwOABfG2dphLzK+YEjmdIxwdytJ5BCAA7dz16lo+ybIyUJ7fiGFr9nN43RiDrUxeSREWTnka3ZuznAxu6nYHZu7onSPgrcKtBa0p6s07o6piM/T7TsLVWaZoZzxujd8z5+Q7te4dW+n4QFtdcVinsfojH1n1J7j7GZv16jqXjuSk7R8kbju/maAI93HvLWDoAO4AKga1rGhrQGtA2AA2AC+ogIiICIiAiIgIiICIiAiIgIiIJ3UUXPqXSruwxknJamPaXX7WI/naUb1h6Xnud/cL1RKd1FFz6l0q7sMZJyWpj2l1+1iP52lG9Yel57nf3C9USAiIgIiINf+EL7wXEv8mcn+6yK7rfQ0X4A/UoTwhfeC4l/kzk/wB1kV3W+hovwB+pByoiICIiAiIgIiICIiAiIgleKP0g5j/lt/3tXOuDij9IOY/5bf8Ae1c66WF9CPWftDLsYnVmpqOitL5fP5OQxY7F1JblhzRuRHG0udsPSdh0HpK1zw11FxZ1lJhtQZbH6WwulckwWfJXzzJk68D2F0fNJuIzJ1ZzN5ABueu42Vfxb0S/iRww1TpeKZtefLY6epFK/wByyRzCGE/cDtt/uKE4ZcYM7PT07pjM8N9WY/UULIqWRnNFoxsJY3lfO20Xcj4ztuA0l3XbYrGdrFjM54UFTTmjtRakIhzdOpqiHAVYKWPvQywh3Yc4sNkh37Roke8co5H/ADNrTzO2Wws1xt0dp3C4nKZHJWKsOWDjSrPxto3Jg33RFUR9sA3puSwAbjfvC0nqbRWo59AcYDWwOQs2fbArZqrUZXcJbtaE46R7oA7btNxFIBt3lhA69F++IdabUPFPAcQ7On9fO0ncwMmIdDgW3qOToWWWnSB81eFzJjFI07dxALGEgdCsbyLPX/GzLZK7w4rcM8lp25Dq2zdhGSzEM00EQr13ykcsckbmu3jc0h3UHoQNiqqnrfJ8OtHXM1xUz2nIY22GxwWMHVsRxuDtg2MRvfI+SQu32DO8ejoVojiDw805Qi4VXTw61XmtIvy+VyeZxF2hZy14STVnsbJYYXSOBdKI3+c77p67qhz0teWlw11HpPh7qOtpTRWbn8a0y/By1LQZLWkY2zBWeAZBHJLzeaCdy7bqDsvIyVrwqa8+J4pZWndx9TE6elp1sVfv4u+WiSWuHv8AG4o2mVrWv5huGN2AG/wm2h4941vGy5w6s0rjLNejVmbcho2pI5J5nP3YS2IsYwNa09q53KS4t3BY4LTGs8bndc6M8JK/R0pqGv5er0BjKl3FyxWbfJUjY7s4iOZ3nNPQdR6QD0W0MhPf0Z4S0+XsYDMZDD5/AUcZBfxlF9mKvYiszF7ZywHsm8szXczthsHddxskTIq3cetBM1f7GTqGLyt42MeQIJTXFo91c2OTshL6Oz5+bfptuu1ieMmkc7rCzpbH5SS5nKtqSlYrRUrBEErGGRwkk7PkYC0Hlc5wa4ghpJBC86zac1Izg3PwZZpDNu1NJn3PGdNI+TTCcl42Lxte53Ee3mb8/MNuVbp4EYG5hcnxSmu46ei6/rK3ZgksQuj8YhMFcNkYSBzM3DgHDcbg/dViZkbWWEzP01aK/Gkv7hbWbWEzP01aK/Gkv7hbXoo/V6Vf8ZWF8iIuQgiIgIiICIiAiIgIiICIiAiIgIiIJ3UUXPqXSruwxknJamPaXX7WI/naUb1h6Xnud/cL1RKd1DF2mptKu7DGS8lqY9pcftYj+d5BvXHped9nf3C9USAiIgIiINf+EL7wXEv8mcn+6yK7rfQ0X4A/Uofj+XjgPxI7NvPJ7Gslyt5ebc+KybDY9/3lc1xtXi/BH6kHIiIgIiICIiAiIgIiICIiCV4o/SDmP+W3/e1c64uJ7HP0Bmy0E8lcyO2G/mtIc4/mBXI1we0OaQ5pG4IO4IXSwvox6z9oZdj6iIqxEREBERAREQEREBYTM/TVor8aS/uFtZtYXKN7bV+jo2dXx3prDm+kMFOdhd97mkYP/UFso/V6VfaVheoiLkIIiICIiAiIgIiICIiAiIgIiICIiCd1DD2mptKv7DGS9nZnd2lx+1iP53kG9celx32d/cLlRKdz8Pa6q0u7xbHTdnNYd2tqTaxF8wcN4B9UTvs74GkqiQEREBERBrzwiuvg/wDEpnMGl+msjGCfQXVpAP1rYQGwAHcFrzwhNn8GtT1u83IGUQPhM0rIgPzvC2IgIiICIiAiIgIiICIiAiIg+EbhScvDem15FLJ5XFwb7trVLI7Jn3Gtc13KPgaNgO4ABVqLbRi14f8AhNlibI/2uR8Y876xH8mntcj4x531iP5NWCLbpWLv+IW8o/2uR8Y876xH8mntcj4x531iP5NWCJpWLv8AiC8o/wBrkfGPO+sR/JqU0LgLmosnrGC3qLLiPE5p1Ct2U8YPZCtXk87zD53NK/4Om3RbbWvdA8uL4lcScS/pLYu083G0jb5jNUjr7jr1+aUpk0rF3/EF5ZL2uR8Y876xH8mntcj4x531iP5NWCJpWLv+ILyj/a5HxjzvrEfyae1yPjHnfWI/k1YImlYu/wCILyj/AGuR8Y876xH8msxg9LU8DLLPG+e1blaGPtW5TJIWgkhoJ6NbuSdgAFmEWFWPiVxlmdSXkREWhBERAREQEREBERAREQEREBERAREQT2ZhdLrDTjvFMdM2Jlp5nsP2swnka0diPSDzEOPoG3wqhU7erOn4gYeXxbHSR18dc3sSP+fInPkrhrY2/W3Br+c/CyMDvKokBERAREQa940NfexOmcQxvMcnqTGRu83fzIbDbb/zsrOH+a2Etd5f/tJxwwFJnn1tM42fK2PgZZsk163+fZNvb/fb8K2IgIiICIiAiIgIiICIiAiIgIiICIiAiIgKH15jLmJzOM1liq0ty1jY5K+RpV4+ea5QeOZzYx3mSORrJGgblwEjAN5ARcIg6mJy1PPYyrkcfZjuUbUbZYZ4nbtewjcEFdtQ2U0ZlcBkrOZ0ZYggmsyOnuYG84to3pD1dI17WudXlJ6l7Wua7dxfG5x5hyYPirir2Sgw+Zhn0rqKZ3JHisxyxuncPseQExzj0/M3Ege6DTuAFqiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIi/E00deF8sr2xRRtLnvedmtA6kknuCDA1arbGvcjcMOOeK2PgqssRyF1xrnPkfJHI3ubHsIHN9LiXb9AN6FTmia5kpXctJHizPl7T7gs4nmcyxB0ZWkc93V7zXZDuR0B3DdwATRoCIiAulmszS07h7uVyVllPH0oX2LFiT3McbQXOcfvAFd1a+iaOLGWrW3McNF4ywyxVLj5uZssPMyYN2+honBro3f+LI0PAEbI3zB2uFWGuw4m9qHMVX0s7qSx5StVZfd1GcjWQVj8Do4WRtdt0MnauHulboiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLH53AYzVGLnxuYx1XK46cbS1LsLZonj7rXAgrIIg14eGeX0yXSaL1XbxkXeMTmw7J0PvN53ieP4AGShjd/cHYBDxE1JploGrNF3BECQ7J6Xc7K1wPhdCGtsgn+y2KQDYjmPQnYaIJ7SvELTWt+2bgs3SyU0AHb1oZR28Hd0liOz4z1HRwB6hUKnNWcOtMa5MLs9gqOTng/4FqaEeMVz8MUo2fGep6tIPUrADhvn8A9z9L65ydeIb8uO1C3yrVB9HnvLbP8A88j7iDYSLXfs11tpsbah0QcpXb0N/Slxtkbf2n15uykb+DH2x7vu7ZTTnFzSOqMg3HU81FBlz/7JyLH0rw/93mayT/PlQWCIiAiIgIiICIiAiIgIiICIiAsDmHTZq/5HrulrRR9lPelmo9pBPA4uBrte/Zpc/lIdsH8rN9w0vY5aP4TeGdp7jTr3PaHw8MGK1HRyMkFMZC1vFkKcbiJLEJDPOla1rndh8Gzg8tDyz0Dh8RWwWOho1BIIIgdjNK+WRxJ3LnPeS5ziSSXOJJJ6lB3AA0AAAAdAAvqL45wY0ucQ1oG5J7gg+rGai1Li9JYqXJZi9DjqMZDTNO7YFxOzWNHe5ziQGtG5cSAASdlKTcTZtSTup6FxzdSPbIYpsvLKYcXWIOzvmwBMzh18yFrhuC1z4+8d3T3DxtTJQ5vUOQfqbUcXMYrk8Qjgp8w2c2rACRCCOnNu6Qg7OkcEGN8lZLis0nP0JsNo9xBZhLHm2cm3/wDeNH/Dhd0Pi+/M8bCXYF8K2E1oa0NaAABsAPQvqICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLFaj0rhdYY91DO4ijmqTuprZCsyePf4eVwIWVRBrxvB9uCPPpLU+c0xsDtT8aN+j9wdhZ5+zaO/lhdH3fdO/wA8s8SNMtHlHA4vWdZp62NPz+I2iPuVrLzGfWB974NiIgg6nG3SZtsp5a5PpW+9/Ztq6jrSY8yP67NjfKBHMeh/4TnjofgKyuueJml+GtDGXtT5mvhqOSvRY6tasb9k6eQOcxpeAQwEMceZxDRt1IVBdo1slUlq268VqtK3lkhnYHsePgLT0IXjnww/A1zfFOPSmL4Y1KGAw7JrNnLVHXH1qIl2jbBI2s3dnOA6wOZrAdnHc9UHrLUeo3Yd1epUri7lLIcYa7n8jA1u3M979jytHM0dASSQAO/bB+W9Yn/yeDH3PGJj/wD4Wm/Bx4aa/wCEniemde6ko6lfSxjmY2Wp2j3V6/asHYuke1pcAR5vToOm+waBvhdOiiiiin+2JmYvrZbGL8t6x+xMH+nm/kTy3rH7Ewf6eb+RZRFlejuR/P3L+DF+W9Y/YmD/AE838ieW9Y/YmD/TzfyLKIl6O5H8/cv4MX5b1j9iYP8ATzfyJ5b1j9iYP9PN/IsoiXo7kfz9y/gxflvWP2Jg/wBPN/Iuplr+t8hirtWu3CU7E8L447LZZnGJxaQHgco32J3239Cz6JejuR/P3L+DyDwq/wDs/wDT/D/JxZXM06GtspHIJW+V7Mgqh4duD2LYwHde8PLgfgXqry3rH7Ewf6eb+RZREvR3I/n7l/Bi/LesfsTB/p5v5FE5XT2ZzF6bIcQzDqHTsRLzhcdK+OlAwfVyVuTe306ubLI5vm7siDui2UurlgDirgI3Bhf0P4JViMOqbTRHzzL+CoqthbVhFYRiuGARCLbkDdunLt0227tlyrBaEcXaH084ncnHVyT/APxNWdXMrpyVTTuSRERYIIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCIzPvk1/wAUv/bNWUWLzPvk1/xS/wDbNWUXVn/Cj0WWA1vr3T/DjBPzGpcpBicc17YhLNuS97vcsY1oLnuPXZrQSdj0XX0FxK07xOx1m9py7Jdr1pvF5u2qTVnxycodylkrGuHRwPd6QtacUXVz4TnB9mYLRjPFcq6gJf8AhnIckXJv6OfszJy79d99uqznhFaoyeE0hiqOGyb8RYzOex2Fs5KuW9tRgsTBj5G77hriPNa4joXb+har7UbWReQOMeYz3CtvEXSOF1dqC3RGmaWar27uSknu42w7ICBzWWCecNkZ15XE7crttgSFY6q0xl8BxPq6DwWtNRSVtXabyb5jdy008+Msw9kILcUpPPGC6VzS1pDTy9AmYegc5mqenMLkMtkZvF8fQryWrM3K53ZxMaXPds0EnYAnYAn4FBaM8IzQXEHN0cTgslkLdy81zq/a4S9BE8BheT2skDWAcrSRu4b9ANyQtG3eJmX40aSzMptWaUWl9A5I6ipQyuZG/MSxy1zBKwHZwj8WsPAI6dow/AtjcLslrzRvAdmezN7CZijQ0nHcxlHHY+WCYGOqHsZK90zw/cAA8rW9ev3FM151Db2e1didM3cNUyVvxaxmLniFFnZvf20/Zvk5N2ghvmxvO7th079yF1K3EXTdqK9KMtBFHSygwszrAdCBdJY0Qt5wOdxMjAOXcEnoSvNVXS9sTeD9rDI6wzmpcpns1Dcti5eL6QfNj7Eu8MG3JEG9WtDNuhO+57sNqXDy5rh7ex2Sz2fuQYvi5WxtexYzNl08dfxmuwN7Uv5vNDiWnfzXecNj1UzSPaKLQ2oMLcz/ABmw3Db2S6hxOmsbpc5YPo5aaO9fnNnsR2trmMr2xtAJHN1MjebfYBa70zqDU3EHUXDTTdzV+bZQjy+p8TayOPuOry5etTc1sD3vZt52wALxs73RBBO6yzD16urlf+67n/Jf/tKYvHsxOMp0Y5Z5460LIWy2pnTSvDWgBz5HEue47blxJJO5KZX/ALruf8l/+0rbTtgd/QX0i6c/Ftb9k1Z5YHQX0i6c/Ftb9k1Z5eDG+pV6ys7RERaUEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBERBEZn3ya/4pf+2asosXmffJr/AIpf+2asourP+FHosp7XXD3TvEvBnD6mxUGWx/aNmbHLu10cjfcvY9pDmOG585pB6nr1WBxHAXQOE0tmNO1tOQPxOYLTkI7UsliS0W+4L5ZHOkJbsC083mnqNir9FhaEaW154NmFscJdXaW0bQrY7JagbAJ7mTtzzum7ORjgJZnmSQtDWuDR1A36AblVmmODum+Gxy+S0hhYYdQW6xibayNyecv5QTHE6WRz3si5tt2s6DvA3AV6ilo2jV/DXgxDp7SWraWpG0r+S1jdtXs4Me18UDzO3kdFGSeflDOnNuCSXO6Erm0Z4OeguH+Yp5PB4y/WtVGOjhE2avWImtcwsI7KWZzCOVxA3advRsQFspEtA1ngvBs4caZzePyuL074nbx9p12mGXrPY1pXNc1xjiMnZsBD3bta0N7unQbZu7wg0hktPZ/B2sNHPis9efkshXkmkPa2XFrjKHc3Mx27GEchbsWgjZWKJaBr7LcBND5zCYjFXcRPNXxHailP5StNtQiQ7yDxkSiUhx7wXkHYfAFlsXwr0phJdMvx+GhpexqKeDFMruexlZkzQJQGg7OLgBuXAnfc95JVWitoBdXK/wDddz/kv/2ldpdXK/8Addz/AJL/APaVnT/lA7+gvpF05+La37JqzywOgvpF05+La37Jqzy8GN9Sr1lZ2iIi0oIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiCb1Pg7c96rl8YyOa9WifA+tNIY2zxOLSQHbHZ4LQWkjY7uB25uZuG8p6gH/wCT8gfvW6m37VXqL10dImmmKZpibb7/AImFugvKmoPidkfW6nyyeVNQfE7I+t1Plleos9K8kfPMv4ILypqD4nZH1up8snlTUHxOyPrdT5ZXqJpXkj55l/BBeVNQfE7I+t1Plk8qag+J2R9bqfLK9RNK8kfPMv4ILypqD4nZH1up8snlTUHxOyPrdT5ZXqJpXkj55l/BBeVNQfE7I+t1Plk8qag+J2R9bqfLK9RNK8kfPMv4ILypqD4nZH1up8svkkGodQQSUfIsmFinaY5LdqxE8xtI2JY2Nzt3bb7bkAHqd9tjfImlT2URHHmX8HBSpxY+lXqwN5YYI2xMBO+zWjYf6Bc6IvFM3m8oIiKAiIgIiICIiD//2Q==",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Image, display\n",
    "\n",
    "try:\n",
    "    display(Image(chain_linkedin.get_graph(xray=True).draw_mermaid_png()))\n",
    "except:\n",
    "    pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "def enter_chain(message: str, members: List[str]):\n",
    "    results = {\n",
    "        \"messages\": [HumanMessage(content=message)],\n",
    "        \"team_members\": \", \".join(members),\n",
    "    }\n",
    "    return results\n",
    "\n",
    "authoring_chain = (\n",
    "    functools.partial(enter_chain, members=authoring_graph.nodes)\n",
    "    | authoring_graph.compile()\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## sample run"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-10-10 14:31:41 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "{'supervisor': {'next': 'DocWriter'}}\n",
      "---\n",
      "2024-10-10 14:31:42 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:31:43 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:31:47 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:31:48 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:31:50 - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:31:53 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:31:55 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:32:25 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "{'DocWriter': {'messages': [HumanMessage(content='The detailed summaries of the two papers have been successfully written and saved to the document named \"paper_summaries.txt\".', name='DocWriter')]}}\n",
      "---\n",
      "2024-10-10 14:32:27 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:32:28 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "{'CiteEditor': {'messages': [HumanMessage(content='The detailed summaries of the two papers are as follows:\\n\\n**Paper 1: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi**\\n\\nThe study investigates the role of tele-mental health (TMH) services during the COVID-19 pandemic in Mississippi, revealing significant disparities in access and the impact on healthcare utilization and expenses. A cohort of 6,787 adult patients insured by the University of Mississippi Medical Center was analyzed, with 3,065 utilizing TMH services from January 2020 to June 2023. The TMH users predominantly included younger, female, White/Caucasian individuals, particularly from rural areas with higher income levels[1].\\n\\nFindings indicated a substantial increase in mental health-related outpatient visits (190%) and related medical expenditures (17%) due to TMH utilization. Conversely, there was a notable decrease in all-cause medical expenditures by 12%, suggesting cost-effectiveness in managing mental health needs remotely. Rural residents experienced even greater benefits, with a 205% increase in outpatient visits and a 19% reduction in overall medical costs. The study highlights the necessity of addressing sociodemographic disparities to enhance access to TMH and reduce healthcare costs comprehensively[1].\\n\\n**Paper 2: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients—Insights from National Inpatient Sample 2020**\\n\\nThis research explores the exacerbated outcomes of sickle cell crisis (SCC) in patients also diagnosed with COVID-19. Utilizing the National Inpatient Sample data from 2020, the study reveals that SCC patients co-infected with COVID-19 experienced significantly higher mortality rates (2.28% vs. 0.33%), more complications such as acute respiratory failure and acute kidney injury, longer hospital stays, and increased hospital charges[2]. The findings underscore the critical need for enhanced medical care for SCC patients with COVID-19 and the importance of preventive strategies to protect this vulnerable group from severe outcomes[2].\\n\\n### Citation List\\n\\n[1] \"Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\"\\n\\n[2] \"Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients—Insights from National Inpatient Sample 2020.\"', name='CiteEditor')]}}\n",
      "---\n",
      "2024-10-10 14:32:44 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "2024-10-10 14:33:00 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "{'CopyEditor': {'messages': [HumanMessage(content='The detailed summaries of the two papers have been successfully written and saved to the document named \"paper_summaries.txt\".', name='CopyEditor')]}}\n",
      "---\n",
      "2024-10-10 14:33:02 - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
      "{'supervisor': {'next': 'FINISH'}}\n",
      "---\n"
     ]
    }
   ],
   "source": [
    "for s in authoring_chain.stream(\n",
    "    \"\"\"Write an detailed summary about: \n",
    "    Paper 1: Tele-Mental Health Service: Unveiling the Disparity and Impact on Healthcare Access and Expenditures during the COVID-19 Pandemic in Mississippi.\n",
    "    Paper 2: Double Trouble: COVID-19 Infection Exacerbates Sickle Cell Crisis Outcomes in Hospitalized Patients-Insights from National Inpatient Sample 2020.\n",
    "    make sure to include citations numbers inside the text you created and at the end of the paragraph, create a citation list. At lst, write it to disk.\"\"\",\n",
    "    {\"recursion_limit\": 10},\n",
    "):\n",
    "    if \"__end__\" not in s:\n",
    "        print(s)\n",
    "        print(\"---\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llmops-course",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}