Spaces:
Running
on
Zero
Running
on
Zero
#based on ComfyUI's and MinusZoneAI's fp8_linear optimization | |
import torch | |
import torch.nn as nn | |
def fp8_linear_forward(cls, original_dtype, input): | |
weight_dtype = cls.weight.dtype | |
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: | |
if len(input.shape) == 3: | |
if weight_dtype == torch.float8_e4m3fn: | |
inn = input.reshape(-1, input.shape[2]).to(torch.float8_e5m2) | |
else: | |
inn = input.reshape(-1, input.shape[2]).to(torch.float8_e4m3fn) | |
w = cls.weight.t() | |
scale_weight = torch.ones((1), device=input.device, dtype=torch.float32) | |
scale_input = scale_weight | |
bias = cls.bias.to(original_dtype) if cls.bias is not None else None | |
out_dtype = original_dtype | |
if bias is not None: | |
o = torch._scaled_mm(inn, w, out_dtype=out_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight) | |
else: | |
o = torch._scaled_mm(inn, w, out_dtype=out_dtype, scale_a=scale_input, scale_b=scale_weight) | |
if isinstance(o, tuple): | |
o = o[0] | |
return o.reshape((-1, input.shape[1], cls.weight.shape[0])) | |
else: | |
cls.to(original_dtype) | |
out = cls.original_forward(input.to(original_dtype)) | |
cls.to(original_dtype) | |
return out | |
else: | |
return cls.original_forward(input) | |
def convert_fp8_linear(module, original_dtype, params_to_keep={}): | |
setattr(module, "fp8_matmul_enabled", True) | |
for name, module in module.named_modules(): | |
if not any(keyword in name for keyword in params_to_keep): | |
if isinstance(module, nn.Linear): | |
original_forward = module.forward | |
setattr(module, "original_forward", original_forward) | |
setattr(module, "forward", lambda input, m=module: fp8_linear_forward(m, original_dtype, input)) | |