|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Megatron tokenizers.""" |
|
|
|
from abc import ABC |
|
from abc import abstractmethod |
|
|
|
from tokenizers import Tokenizer |
|
from transformers import GPT2Tokenizer, GPT2TokenizerFast |
|
import numpy as np |
|
import sentencepiece as spm |
|
from typing import List, Union |
|
from .gpt2_tokenization import GPT2Tokenizer |
|
|
|
|
|
def build_tokenizer(args): |
|
"""Initialize tokenizer.""" |
|
if args.rank == 0: |
|
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True) |
|
|
|
|
|
if args.tokenizer_type.lower() == "GPT2BPETokenizer".lower(): |
|
assert args.vocab_file is not None |
|
assert args.merge_file is not None |
|
tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file) |
|
elif args.tokenizer_type.lower() == "SPMTokenizer".lower(): |
|
assert args.vocab_file is not None |
|
tokenizer = SentencePieceTokenizer(args.vocab_file) |
|
elif args.tokenizer_type.lower() == "HFTokenizer".lower(): |
|
assert args.vocab_file is not None |
|
tokenizer = HFTokenizer(args.vocab_file) |
|
elif args.tokenizer_type.lower() == "HFGPT2Tokenizer".lower(): |
|
if args.vocab_file is None: |
|
print( |
|
"WARNING: No vocab file found, loading Huggingface's pretrained GPT2Tokenizer" |
|
) |
|
tokenizer = HFGPT2Tokenizer(args.vocab_file) |
|
elif args.tokenizer_type.lower() == "CharLevelTokenizer".lower(): |
|
tokenizer = CharLevelTokenizer(vocab_size=512) |
|
elif args.tokenizer_type.lower() == "TiktokenTokenizer".lower(): |
|
assert args.vocab_file is not None |
|
tokenizer = TiktokenTokenizer(args.vocab_file) |
|
else: |
|
raise NotImplementedError( |
|
"{} tokenizer is not " "implemented.".format(args.tokenizer_type) |
|
) |
|
|
|
|
|
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args) |
|
|
|
return tokenizer |
|
|
|
|
|
def _vocab_size_with_padding(orig_vocab_size, args): |
|
"""Pad vocab size so it is divisible by model parallel size and |
|
still having GPU friendly size.""" |
|
|
|
after = orig_vocab_size |
|
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size |
|
while (after % multiple) != 0: |
|
after += 1 |
|
if args.rank == 0: |
|
print( |
|
" > padded vocab (size: {}) with {} dummy tokens " |
|
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after), |
|
flush=True, |
|
) |
|
return after |
|
|
|
|
|
class AbstractTokenizer(ABC): |
|
"""Abstract class for tokenizer.""" |
|
|
|
def __init__(self, name): |
|
self.name = name |
|
super().__init__() |
|
|
|
@property |
|
@abstractmethod |
|
def vocab_size(self): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def vocab(self): |
|
"""Dictionary from vocab text token to id token.""" |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def inv_vocab(self): |
|
"""Dictionary from vocab id token to text token.""" |
|
pass |
|
|
|
@abstractmethod |
|
def tokenize(self, text): |
|
pass |
|
|
|
def detokenize(self, token_ids): |
|
raise NotImplementedError( |
|
"detokenizer is not implemented for {} " "tokenizer".format(self.name) |
|
) |
|
|
|
@property |
|
def cls(self): |
|
raise NotImplementedError( |
|
"CLS is not provided for {} " "tokenizer".format(self.name) |
|
) |
|
|
|
@property |
|
def sep(self): |
|
raise NotImplementedError( |
|
"SEP is not provided for {} " "tokenizer".format(self.name) |
|
) |
|
|
|
@property |
|
def pad(self): |
|
raise NotImplementedError( |
|
"PAD is not provided for {} " "tokenizer".format(self.name) |
|
) |
|
|
|
@property |
|
def eod(self): |
|
raise NotImplementedError( |
|
"EOD is not provided for {} " "tokenizer".format(self.name) |
|
) |
|
|
|
@property |
|
def mask(self): |
|
raise NotImplementedError( |
|
"MASK is not provided for {} " "tokenizer".format(self.name) |
|
) |
|
|
|
|
|
class _GPT2BPETokenizer(AbstractTokenizer): |
|
"""Original GPT2 BPE tokenizer.""" |
|
|
|
def __init__(self, vocab_file, merge_file): |
|
name = "GPT2 BPE" |
|
super().__init__(name) |
|
|
|
self.tokenizer = GPT2Tokenizer( |
|
vocab_file, merge_file, errors="replace", special_tokens=[], max_len=None |
|
) |
|
self.eod_id = self.tokenizer.encoder["<|endoftext|>"] |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.tokenizer.encoder) |
|
|
|
@property |
|
def vocab(self): |
|
return self.tokenizer.encoder |
|
|
|
@property |
|
def inv_vocab(self): |
|
return self.tokenizer.decoder |
|
|
|
def tokenize(self, text): |
|
return self.tokenizer.encode(text) |
|
|
|
def detokenize(self, token_ids): |
|
return self.tokenizer.decode(token_ids) |
|
|
|
@property |
|
def eod(self): |
|
return self.eod_id |
|
|
|
|
|
class SentencePieceTokenizer(AbstractTokenizer): |
|
"""Designed to Integrate SP's Tokenizer.""" |
|
|
|
def __init__(self, vocab_file): |
|
name = "SPM" |
|
super().__init__(name) |
|
|
|
self.tokenizer = spm.SentencePieceProcessor(model_file=vocab_file) |
|
self.eod_id = self.tokenizer.piece_to_id("<|endoftext|>") |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.get_piece_size() |
|
|
|
@property |
|
def vocab(self): |
|
return { |
|
self.tokenizer.id_to_piece(idx): idx |
|
for idx in range(self.tokenizer.get_piece_size()) |
|
} |
|
|
|
@property |
|
def inv_vocab(self): |
|
return { |
|
idx: self.tokenizer.id_to_piece(idx) |
|
for idx in range(self.tokenizer.get_piece_size()) |
|
} |
|
|
|
def tokenize(self, text): |
|
return self.tokenizer.encode(text) |
|
|
|
def detokenize(self, token_ids): |
|
return self.tokenizer.decode(token_ids) |
|
|
|
@property |
|
def eod(self): |
|
return self.eod_id |
|
|
|
|
|
class HFTokenizer(AbstractTokenizer): |
|
"""Designed to Integrate HF's Tokenizer library.""" |
|
|
|
def __init__(self, vocab_file): |
|
name = "HFTokenizer" |
|
super().__init__(name) |
|
|
|
self.tokenizer = Tokenizer.from_file(vocab_file) |
|
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>") |
|
self.pad_id = self.tokenizer.token_to_id("<|padding|>") |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.get_vocab_size() |
|
|
|
@property |
|
def vocab(self): |
|
return self.tokenizer.get_vocab() |
|
|
|
@property |
|
def inv_vocab(self): |
|
return self.tokenizer.decoder |
|
|
|
def tokenize(self, text: str): |
|
return self.tokenizer.encode(text).ids |
|
|
|
def tokenize_batch(self, text_batch: Union[List[str], str]): |
|
return self.tokenizer.encode_batch(text_batch) |
|
|
|
def detokenize(self, token_ids): |
|
return self.tokenizer.decode(token_ids) |
|
|
|
@property |
|
def eod(self): |
|
return self.eod_id |
|
|
|
|
|
class HFGPT2Tokenizer(AbstractTokenizer): |
|
"""Designed to Integrate the pretrained OpenAI GPT2 Tokenizers from HF""" |
|
|
|
def __init__(self, vocab_file=None, fast=True): |
|
name = "HFGPT2Tokenizer" |
|
if fast: |
|
name += "Fast" |
|
super().__init__(name) |
|
if vocab_file is None: |
|
vocab_file = "gpt2" |
|
if fast: |
|
self.tokenizer = GPT2TokenizerFast.from_pretrained(vocab_file) |
|
else: |
|
self.tokenizer = GPT2Tokenizer.from_pretrained(vocab_file) |
|
|
|
self.tokenizer.add_special_tokens({"pad_token": "<|padding|>"}) |
|
self.eod_id = self.tokenizer.eos_token_id |
|
self.pad_id = self.tokenizer.pad_token_id |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.tokenizer) |
|
|
|
@property |
|
def vocab(self): |
|
return self.tokenizer.get_vocab() |
|
|
|
@property |
|
def inv_vocab(self): |
|
return self.tokenizer._tokenizer.decoder |
|
|
|
def tokenize(self, text: str): |
|
return self.tokenizer.encode(text) |
|
|
|
def tokenize_batch(self, text_batch: Union[List[str], str]): |
|
if isinstance(text_batch, str): |
|
text_batch = [text_batch] |
|
return [self.tokenize(t) for t in text_batch] |
|
|
|
def detokenize(self, token_ids): |
|
return self.tokenizer.decode(token_ids) |
|
|
|
@property |
|
def eod(self): |
|
return self.eod_id |
|
|
|
|
|
class CharLevelTokenizer(AbstractTokenizer): |
|
"""Character Level Tokenizer""" |
|
|
|
def __init__(self, vocab_size): |
|
name = "CharLevelTokenizer" |
|
super().__init__(name) |
|
self._vocab_size = vocab_size |
|
self.eod_id = 0 |
|
self.pad_id = 1 |
|
|
|
def clamp(self, n): |
|
return max(32, min(n, self.vocab_size)) |
|
|
|
@property |
|
def vocab_size(self): |
|
return self._vocab_size |
|
|
|
@property |
|
def vocab(self): |
|
raise NotImplementedError |
|
|
|
@property |
|
def inv_vocab(self): |
|
raise NotImplementedError |
|
|
|
def decode_token(self, token: int): |
|
return str(chr(self.clamp(token))) |
|
|
|
def tokenize(self, text: str): |
|
return list(np.fromstring(text, dtype=np.uint8)) |
|
|
|
def tokenize_batch(self, text_batch: Union[List[str], str]): |
|
if isinstance(text_batch, list): |
|
return [self.tokenize(s) for s in text_batch] |
|
else: |
|
return self.tokenize(text_batch) |
|
|
|
def detokenize(self, token_ids): |
|
return "".join(list(map(self.decode_token, token_ids))) |
|
|
|
@property |
|
def eod(self): |
|
return self.eod_id |
|
|
|
|
|
class TiktokenTokenizer(AbstractTokenizer): |
|
"""Tokenizer from OpenAI's tiktoken implementation""" |
|
|
|
def __init__(self, vocab_file): |
|
try: |
|
import tiktoken |
|
except ModuleNotFoundError: |
|
print("Please install tiktoken: (https://github.com/openai/tiktoken)") |
|
raise Exception |
|
|
|
name = "TiktokenTokenizer" |
|
super().__init__(name) |
|
|
|
self.tokenizer = tiktoken.get_encoding(vocab_file) |
|
self.eod_id = self.tokenizer.eot_token |
|
self.pad_id = None |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.n_vocab |
|
|
|
@property |
|
def vocab(self): |
|
raise NotImplementedError( |
|
"TiktokenTokenizer does not implement vocabulary access." |
|
) |
|
|
|
@property |
|
def inv_vocab(self): |
|
raise NotImplementedError( |
|
"TiktokenTokenizer does not implement vocabulary access. \ |
|
To get the idx-th token in vocabulary, use tokenizer.decode([idx]) ." |
|
) |
|
|
|
def tokenize(self, text: str): |
|
return self.tokenizer.encode(text) |
|
|
|
def tokenize_batch(self, text_batch: List[str]): |
|
return self.tokenizer.encode_batch(text_batch, allowed_special="all") |
|
|
|
def detokenize(self, token_ids): |
|
return self.tokenizer.decode(tokens=token_ids, errors="strict") |
|
|
|
@property |
|
def eod(self): |
|
return self.eod_id |
|
|
|
@property |
|
def pad(self): |
|
raise NotImplementedError |
|
|