|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes. Provided as is from https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/pytorch_pretrained_bert/tokenization.py""" |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import collections |
|
import logging |
|
import os |
|
import unicodedata |
|
from io import open |
|
|
|
from .file_utils import cached_path |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
PRETRAINED_VOCAB_ARCHIVE_MAP = { |
|
'bert-base-uncased': ".pytorch_pretrained_bert/bert-base-uncased-vocab.txt", |
|
'bert-large-uncased': ".pytorch_pretrained_bert/bert-large-uncased-vocab.txt", |
|
'bert-base-cased': ".pytorch_pretrained_bert/bert-base-cased-vocab.txt", |
|
'bert-large-cased': ".pytorch_pretrained_bert/bert-large-cased-vocab.txt", |
|
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", |
|
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", |
|
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", |
|
} |
|
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { |
|
'bert-base-uncased': 512, |
|
'bert-large-uncased': 512, |
|
'bert-base-cased': 512, |
|
'bert-large-cased': 512, |
|
'bert-base-multilingual-uncased': 512, |
|
'bert-base-multilingual-cased': 512, |
|
'bert-base-chinese': 512, |
|
} |
|
VOCAB_NAME = 'vocab.txt' |
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
index = 0 |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
while True: |
|
token = reader.readline() |
|
if not token: |
|
break |
|
token = token.strip() |
|
vocab[token] = index |
|
index += 1 |
|
return vocab |
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
|
|
class BertTokenizer(object): |
|
"""Runs end-to-end tokenization: punctuation splitting + wordpiece""" |
|
|
|
def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True, |
|
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): |
|
"""Constructs a BertTokenizer. |
|
|
|
Args: |
|
vocab_file: Path to a one-wordpiece-per-line vocabulary file |
|
do_lower_case: Whether to lower case the input |
|
Only has an effect when do_wordpiece_only=False |
|
do_basic_tokenize: Whether to do basic tokenization before wordpiece. |
|
max_len: An artificial maximum length to truncate tokenized sequences to; |
|
Effective maximum length is always the minimum of this |
|
value (if specified) and the underlying BERT model's |
|
sequence length. |
|
never_split: List of tokens which will never be split during tokenization. |
|
Only has an effect when do_wordpiece_only=False |
|
""" |
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " |
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) |
|
self.vocab = load_vocab(vocab_file) |
|
self.ids_to_tokens = collections.OrderedDict( |
|
[(ids, tok) for tok, ids in self.vocab.items()]) |
|
self.do_basic_tokenize = do_basic_tokenize |
|
if do_basic_tokenize: |
|
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, |
|
never_split=never_split) |
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) |
|
self.max_len = max_len if max_len is not None else int(1e12) |
|
|
|
def tokenize(self, text): |
|
if self.do_basic_tokenize: |
|
split_tokens = [] |
|
for token in self.basic_tokenizer.tokenize(text): |
|
for sub_token in self.wordpiece_tokenizer.tokenize(token): |
|
split_tokens.append(sub_token) |
|
else: |
|
split_tokens = self.wordpiece_tokenizer.tokenize(text) |
|
return split_tokens |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
"""Converts a sequence of tokens into ids using the vocab.""" |
|
ids = [] |
|
for token in tokens: |
|
ids.append(self.vocab[token]) |
|
if len(ids) > self.max_len: |
|
logger.warning( |
|
"Token indices sequence length is longer than the specified maximum " |
|
" sequence length for this BERT model ({} > {}). Running this" |
|
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len) |
|
) |
|
return ids |
|
|
|
def convert_ids_to_tokens(self, ids): |
|
"""Converts a sequence of ids in wordpiece tokens using the vocab.""" |
|
tokens = [] |
|
for i in ids: |
|
tokens.append(self.ids_to_tokens[i]) |
|
return tokens |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): |
|
""" |
|
Instantiate a PreTrainedBertModel from a pre-trained model file. |
|
Download and cache the pre-trained model file if needed. |
|
""" |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: |
|
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
else: |
|
vocab_file = pretrained_model_name_or_path |
|
if os.path.isdir(vocab_file): |
|
vocab_file = os.path.join(vocab_file, VOCAB_NAME) |
|
|
|
try: |
|
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) |
|
except EnvironmentError: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find any file " |
|
"associated to this path or url.".format( |
|
pretrained_model_name_or_path, |
|
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), |
|
vocab_file)) |
|
return None |
|
if resolved_vocab_file == vocab_file: |
|
logger.info("loading vocabulary file {}".format(vocab_file)) |
|
else: |
|
logger.info("loading vocabulary file {} from cache at {}".format( |
|
vocab_file, resolved_vocab_file)) |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: |
|
|
|
|
|
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] |
|
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) |
|
|
|
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) |
|
return tokenizer |
|
|
|
|
|
class BasicTokenizer(object): |
|
"""Runs basic tokenization (punctuation splitting, lower casing, etc.).""" |
|
|
|
def __init__(self, |
|
do_lower_case=True, |
|
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): |
|
"""Constructs a BasicTokenizer. |
|
|
|
Args: |
|
do_lower_case: Whether to lower case the input. |
|
""" |
|
self.do_lower_case = do_lower_case |
|
self.never_split = never_split |
|
|
|
def tokenize(self, text): |
|
"""Tokenizes a piece of text.""" |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
text = self._tokenize_chinese_chars(text) |
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if self.do_lower_case and token not in self.never_split: |
|
token = token.lower() |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token)) |
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text): |
|
"""Splits punctuation on a piece of text.""" |
|
if text in self.never_split: |
|
return [text] |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) or |
|
(cp >= 0x3400 and cp <= 0x4DBF) or |
|
(cp >= 0x20000 and cp <= 0x2A6DF) or |
|
(cp >= 0x2A700 and cp <= 0x2B73F) or |
|
(cp >= 0x2B740 and cp <= 0x2B81F) or |
|
(cp >= 0x2B820 and cp <= 0x2CEAF) or |
|
(cp >= 0xF900 and cp <= 0xFAFF) or |
|
(cp >= 0x2F800 and cp <= 0x2FA1F)): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xfffd or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
"""Tokenizes a piece of text into its word pieces. |
|
|
|
This uses a greedy longest-match-first algorithm to perform tokenization |
|
using the given vocabulary. |
|
|
|
For example: |
|
input = "unaffable" |
|
output = ["un", "##aff", "##able"] |
|
|
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through `BasicTokenizer`. |
|
|
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|
|
|
|
def _is_whitespace(char): |
|
"""Checks whether `chars` is a whitespace character.""" |
|
|
|
|
|
if char == " " or char == "\t" or char == "\n" or char == "\r": |
|
return True |
|
cat = unicodedata.category(char) |
|
if cat == "Zs": |
|
return True |
|
return False |
|
|
|
|
|
def _is_control(char): |
|
"""Checks whether `chars` is a control character.""" |
|
|
|
|
|
if char == "\t" or char == "\n" or char == "\r": |
|
return False |
|
cat = unicodedata.category(char) |
|
if cat.startswith("C"): |
|
return True |
|
return False |
|
|
|
|
|
def _is_punctuation(char): |
|
"""Checks whether `chars` is a punctuation character.""" |
|
cp = ord(char) |
|
|
|
|
|
|
|
|
|
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or |
|
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): |
|
return True |
|
cat = unicodedata.category(char) |
|
if cat.startswith("P"): |
|
return True |
|
return False |