File size: 7,183 Bytes
751936e d10ecd7 6551d2c a173fe5 9495a4f a173fe5 309a593 9495a4f 7156337 0ce6477 f4973d4 751936e 428b731 751936e d10ecd7 9495a4f 751936e 7a8d6d6 751936e 9495a4f 428b731 751936e 428b731 751936e d10ecd7 d2551ad d10ecd7 751936e 9495a4f 428b731 9495a4f 428b731 d10ecd7 428b731 d10ecd7 9495a4f d10ecd7 428b731 d10ecd7 428b731 e4187ae 79b95c3 309a593 428b731 7156337 428b731 d10ecd7 428b731 751936e 428b731 9495a4f 428b731 d10ecd7 428b731 9495a4f d10ecd7 428b731 751936e 9495a4f 7a8d6d6 9495a4f 7a8d6d6 9495a4f 751936e 9495a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# coding=utf-8
# author: xusong
# time: 2022/8/23 16:06
"""
## TODO:
- i18 国际化 https://blog.csdn.net/qq_26212731/article/details/78457198 request.header中也有language
- iter_vocab 的 warmup
- 开关
- add_special_token 开关
- theme 开关 light/dark
- token_id/tokens/bytes 开关
- 中文字词统计,是否要包括 _ G 等字符
- 评测
- OOV评测
- 通过 javascript 添加 hover_text
- 英文 utf-8编码
- 词典支持下载,借用image下载的标签,
- baichuan的单字数量怎么两万多个?
- qwen: ValueError: Unclosed image token
- 路径修改为全path meta-llama/Llama-2-13b-hf
plots
table
## related demo
- [](http://text-processing.com/demo/tokenize/)
- [gpt-tokenizer](https://gpt-tokenizer.dev/)
- [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/)
- [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground)
## 可视化
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
"""
import gradio as gr
from vocab import all_tokenizers
from util import *
from examples import example_fn
get_window_url_params = """
function(url_params) {
const params = new URLSearchParams(window.location.search);
url_params = JSON.stringify(Object.fromEntries(params));
return url_params;
}
"""
with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
gr.HTML("""<h1 align="center">Tokenizer Arena ⚔️</h1>""")
# links: https://www.coderstool.com/utf8-encoding-decoding
# 功能:输入文本,进行分词
# 分词器:常见的分词器有集中,
# 背景:方便分词、看词粒度、对比
with gr.Row():
gr.Markdown("## Input Text")
dropdown_examples = gr.Dropdown(
# ["空格测试", "标点测试", "符号测试", "数字测试"],
["spaces", "punctuations", "symbols", "digits"],
value="Examples",
type="index",
show_label=False,
container=False,
scale=0,
elem_classes="example-style"
)
user_input = gr.Textbox(
# value=default_user_input,
label="Input Text",
lines=5,
show_label=False,
)
gr.Markdown("## Tokenization")
with gr.Row():
with gr.Column(scale=6):
with gr.Group():
tokenizer_type_1 = gr.Dropdown(
all_tokenizers,
label="Tokenizer 1",
)
with gr.Group():
"""
<div class="stat"><div class="stat-value">69</div><div class="stat-label">Characters</div></div>
"""
with gr.Row():
stats_vocab_size_1 = gr.TextArea(
label="VocabSize",
lines=1,
elem_classes="statistics"
)
stats_zh_token_size_1 = gr.TextArea(
label="ZH char/word",
lines=1,
elem_classes="statistics"
)
stats_overlap_token_size_1 = gr.TextArea(
# value=default_stats_overlap_token_size,
label="Overlap Tokens",
lines=1,
elem_classes="statistics"
)
# stats_3 = gr.TextArea(
# label="Compress Rate",
# lines=1,
# elem_classes="statistics"
# )
# https://www.onlinewebfonts.com/icon/418591
gr.Image("images/VS.svg", scale=1, show_label=False,
show_download_button=False, container=False,
show_share_button=False)
with gr.Column(scale=6):
with gr.Group():
tokenizer_type_2 = gr.Dropdown(
all_tokenizers,
label="Tokenizer 2",
)
with gr.Group():
with gr.Row():
stats_vocab_size_2 = gr.TextArea(
label="VocabSize",
lines=1,
elem_classes="statistics"
)
stats_zh_token_size_2 = gr.TextArea(
label="ZH char/word", # 中文字/词
lines=1,
elem_classes="statistics"
)
# stats_6 = gr.TextArea(
# label="Compress Rate",
# lines=1,
# elem_classes="statistics"
# )
stats_overlap_token_size_2 = gr.TextArea(
label="Overlap Tokens",
lines=1,
elem_classes="statistics"
)
# TODO: 图 表 压缩率
with gr.Row():
with gr.Column():
output_text_1 = gr.Highlightedtext(
show_legend=True,
elem_classes="space-show"
)
with gr.Column():
output_text_2 = gr.Highlightedtext(
show_legend=True,
elem_classes="space-show"
)
with gr.Row():
output_table_1 = gr.Dataframe()
output_table_2 = gr.Dataframe()
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1],
[output_text_1, output_table_1])
tokenizer_type_1.change(basic_count, [tokenizer_type_1], [stats_vocab_size_1, stats_zh_token_size_1])
tokenizer_type_1.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
[stats_overlap_token_size_1, stats_overlap_token_size_2])
user_input.change(tokenize_pair,
[user_input, tokenizer_type_1, tokenizer_type_2],
[output_text_1, output_table_1, output_text_2, output_table_2]) # , pass_request=1
tokenizer_type_2.change(tokenize, [user_input, tokenizer_type_2],
[output_text_2, output_table_2])
tokenizer_type_2.change(basic_count, [tokenizer_type_2], [stats_vocab_size_2, stats_zh_token_size_2])
tokenizer_type_2.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
[stats_overlap_token_size_1, stats_overlap_token_size_2])
dropdown_examples.change(
example_fn,
dropdown_examples,
[user_input, tokenizer_type_1, tokenizer_type_2]
)
demo.load(_js=open("js/onload.js", "r", encoding="utf-8").read())
demo.load(
fn=on_load,
inputs=[user_input], # 这里只需要传个空object即可。
outputs=[user_input, tokenizer_type_1, tokenizer_type_2],
_js=get_window_url_params
)
if __name__ == "__main__":
# demo.queue(max_size=20).launch()
demo.launch()
|