File size: 8,983 Bytes
751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e 428b731 751936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# coding=utf-8
# author: xusong
# time: 2022/8/23 16:06
"""
plots
table
## related demo
- [](http://text-processing.com/demo/tokenize/)
- [gpt-tokenizer](https://gpt-tokenizer.dev/)
- [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/)
- [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground)
## 可视化
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
"""
import json
import pandas as pd
import gradio as gr
from vocab import all_tokenizers, load_tokener
# 显示空格:https://blog.csdn.net/liuxiao723846/article/details/118994673
# 隐藏legend:
css = """
.space-show {white-space: pre-wrap;}
.cell-wrap {white-space: pre-wrap;}
.category-legend {display: none !important}
.statistics textarea {min-width: min(50px,100%) !important; font-size: 20px !important; font-weight: 600 !important; text-align: center !important; border: none !important;}
.statistics label {text-align: center !important;}
"""
example_text = """Replace this text in the input field to see how tokenization works
华为智能音箱发布:华为Sound X"""
# llama chatglm_6b gpt_nexo_20b baichuan baichuan_7b
examples = [
["空格测试: 2个空格 8个空格", "llama", "chatglm_6b"], # chatglm 有blank_n,
["标点测试:,。!?;", "baichuan_7b", "llama"],
["符号测试:🦙", "baichuan_7b", "llama"],
["中文测试:🦙", "baichuan_7b", "llama"],
["数字测试:(10086 + 98) = 100184", "baichuan_7b", "llama"],
]
def tokenize(text, tokenizer_type, color_num=5):
"""
TODO: cache tokenizer
"""
print(text, tokenizer_type)
pos_tokens = []
tokenizer = load_tokener(tokenizer_type)
encoding = tokenizer.encode(text)
table = []
for idx, token_id in enumerate(encoding):
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
pos_tokens.extend([(decode_text, str(idx % color_num))])
# token "Byte": # 这是 utf-8编码吧?
token = tokenizer.convert_ids_to_tokens([token_id])[0]
if isinstance(token, bytes):
try:
token_str = token.decode("utf-8")
except:
token_str = token.decode("utf-8", errors="ignore")
print("decode_error", token, token_str)
token_bytes = token
json_dumps = json.dumps(token_str)
elif isinstance(token, str):
token_str = token
token_bytes = bytes(token_str, "utf-8")
json_dumps = json.dumps(token_str)
else:
return
table.append(
{"TokenID": token_id,
"⭐Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama
"Text": decode_text, #
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes)
"Bytes": str(token_bytes),
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode
}
)
table_df = pd.DataFrame(table)
print(table)
# print(table_df)
return pos_tokens, table_df, len(encoding)
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2):
pos_tokens_1, table_df_1, token_size_1 = tokenize(text, tokenizer_type_1)
pos_tokens_2, table_df_2, token_size_2 = tokenize(text, tokenizer_type_2)
return pos_tokens_1, table_df_1, token_size_1, pos_tokens_2, table_df_2, token_size_2
def get_vocab_size(tokenizer_type):
tokenizer = load_tokener(tokenizer_type)
return tokenizer.vocab_size
def test_coding():
bytes1 = b'\xe4\xb8\xad'
print(bytes1) # b'\xe4\xb8\xad'
with gr.Blocks(css=css) as demo:
gr.HTML("""<h1 align="center">Tokenizer Arena ⚔️</h1>""")
# links: https://www.coderstool.com/utf8-encoding-decoding
# 功能:输入文本,进行分词
# 分词器:常见的分词器有集中,
# 背景:方便分词、看词粒度、对比
#
# Byte: 表示分词
gr.Markdown("## Input Text")
user_input = gr.Textbox(
value=example_text,
label="Input Text",
lines=5,
show_label=False,
) # placeholder="Enter sentence here..."
# submitBtn = gr.Button("生成回复", variant="primary")
gr.Markdown("## Tokenization")
with gr.Row():
with gr.Column(scale=6):
with gr.Group():
tokenizer_type_1 = gr.Dropdown(
all_tokenizers,
value="llama",
label="Tokenizer 1",
)
with gr.Group():
"""
<div class="stat"><div class="stat-value">69</div><div class="stat-label">Characters</div></div>
"""
with gr.Row():
stats_vocab_size_1 = gr.TextArea(
label="VocabSize",
lines=1,
elem_classes="statistics"
)
stats_token_size_1 = gr.TextArea(
label="Tokens",
lines=1,
elem_classes="statistics"
)
stats_3 = gr.TextArea(
label="Compress Rate",
lines=1,
elem_classes="statistics"
)
# https://www.onlinewebfonts.com/icon/418591
gr.Image("images/VS.svg", scale=1, show_label=False, show_download_button=False, container=False) # height=10,
with gr.Column(scale=6):
with gr.Group():
tokenizer_type_2 = gr.Dropdown(
all_tokenizers,
value="baichuan_7b",
label="Tokenizer 2",
)
with gr.Group():
with gr.Row():
stats_vocab_size_2 = gr.TextArea(
label="VocabSize",
lines=1,
elem_classes="statistics"
)
stats_token_size_2 = gr.TextArea(
label="Tokens",
lines=1,
elem_classes="statistics"
)
stats_6 = gr.TextArea(
label="Compress Rate",
lines=1,
elem_classes="statistics"
)
# TODO: 图 表 压缩率
with gr.Row():
with gr.Column():
output_text_1 = gr.Highlightedtext(
label="Tokens 1",
show_legend=True,
elem_classes="space-show"
)
with gr.Column():
output_text_2 = gr.Highlightedtext(
label="Tokens 2",
show_legend=True,
elem_classes="space-show"
)
with gr.Row():
output_table_1 = gr.Dataframe(
headers=["TokenID", "Byte", "Text"],
datatype=["str", "str", "str"],
# elem_classes="space-show", # 给整个Dataframe加这个css不起作用,因此直接修改cell-wrap
)
output_table_2 = gr.Dataframe(
headers=["TokenID", "Token", "Text"],
datatype=["str", "str", "str"],
)
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1], [output_text_1, output_table_1, stats_token_size_1])
tokenizer_type_1.change(get_vocab_size, [tokenizer_type_1], [stats_vocab_size_1])
user_input.change(tokenize_pair,
[user_input, tokenizer_type_1, tokenizer_type_2],
[output_text_1, output_table_1, stats_token_size_1, output_text_2, output_table_2, stats_token_size_2])
tokenizer_type_2.change(tokenize, [user_input, tokenizer_type_2], [output_text_2, output_table_2, stats_token_size_2])
tokenizer_type_2.change(get_vocab_size, [tokenizer_type_2], [stats_vocab_size_2])
gr.Examples(
examples,
[user_input, tokenizer_type_1, tokenizer_type_2],
[output_text_1, output_table_1, stats_token_size_1, output_text_2, output_table_2, stats_token_size_2],
tokenize_pair,
cache_examples=True,
)
# submitBtn.click(tokenize, [user_input, tokenizer_type], outputs,
# show_progress=True)
# examples=[
# ["What a beautiful morning for a walk!"],
# ["It was the best of times, it was the worst of times."],
# ["多个空格 It ss was the best of times, it was the worst of times."],
# ]
if __name__ == "__main__":
demo.launch()
|