gavinyuan
udpate: app.py import FSGenerator
a104d3f
raw
history blame
8.45 kB
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import kornia
class InstanceNorm(nn.Module):
def __init__(self, epsilon=1e-8):
"""
@notice: avoid in-place ops.
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3
"""
super(InstanceNorm, self).__init__()
self.epsilon = epsilon
def forward(self, x):
x = x - torch.mean(x, (2, 3), True)
tmp = torch.mul(x, x) # or x ** 2
tmp = torch.rsqrt(torch.mean(tmp, (2, 3), True) + self.epsilon)
return x * tmp
class ApplyStyle(nn.Module):
"""
@ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb
"""
def __init__(self, latent_size, channels):
super(ApplyStyle, self).__init__()
self.linear = nn.Linear(latent_size, channels * 2)
def forward(self, x, latent):
style = self.linear(latent) # style => [batch_size, n_channels*2]
shape = [-1, 2, x.size(1), 1, 1]
style = style.view(shape) # [batch_size, 2, n_channels, ...]
#x = x * (style[:, 0] + 1.) + style[:, 1]
x = x * (style[:, 0] * 1 + 1.) + style[:, 1] * 1
return x
class ResnetBlock_Adain(nn.Module):
def __init__(self, dim, latent_size, padding_type, activation=nn.ReLU(True)):
super(ResnetBlock_Adain, self).__init__()
p = 0
conv1 = []
if padding_type == 'reflect':
conv1 += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv1 += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv1 += [nn.Conv2d(dim, dim, kernel_size=3, padding = p), InstanceNorm()]
self.conv1 = nn.Sequential(*conv1)
self.style1 = ApplyStyle(latent_size, dim)
self.act1 = activation
p = 0
conv2 = []
if padding_type == 'reflect':
conv2 += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv2 += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv2 += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), InstanceNorm()]
self.conv2 = nn.Sequential(*conv2)
self.style2 = ApplyStyle(latent_size, dim)
def forward(self, x, dlatents_in_slice):
y = self.conv1(x)
y = self.style1(y, dlatents_in_slice)
y = self.act1(y)
y = self.conv2(y)
y = self.style2(y, dlatents_in_slice)
out = x + y
return out
class Generator_Adain_Upsample(nn.Module):
def __init__(self, input_nc, output_nc, latent_size, n_blocks=6, deep=False,
norm_layer=nn.BatchNorm2d,
padding_type='reflect',
mouth_net_param: dict = None,
):
assert (n_blocks >= 0)
super(Generator_Adain_Upsample, self).__init__()
self.latent_size = latent_size
self.mouth_net_param = mouth_net_param
if mouth_net_param.get('use'):
self.latent_size += mouth_net_param.get('feature_dim')
activation = nn.ReLU(True)
self.deep = deep
self.first_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, kernel_size=7, padding=0),
norm_layer(64), activation)
### downsample
self.down1 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
norm_layer(128), activation)
self.down2 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
norm_layer(256), activation)
self.down3 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
norm_layer(512), activation)
if self.deep:
self.down4 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
norm_layer(512), activation)
### resnet blocks
BN = []
for i in range(n_blocks):
BN += [
ResnetBlock_Adain(512, latent_size=self.latent_size,
padding_type=padding_type, activation=activation)]
self.BottleNeck = nn.Sequential(*BN)
if self.deep:
self.up4 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512), activation
)
self.up3 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False),
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256), activation
)
self.up2 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128), activation
)
self.up1 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear',align_corners=False),
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64), activation
)
self.last_layer = nn.Sequential(nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, kernel_size=7, padding=0))
self.register_buffer(
name="trans_matrix",
tensor=torch.tensor(
[
[
[1.07695457, -0.03625215, -1.56352194],
[0.03625215, 1.07695457, -5.32134629],
]
],
requires_grad=False,
).float(),
)
def forward(self, source, target, net_arc, mouth_net=None):
x = target # 3*224*224
if net_arc is None:
id_vector = source
else:
with torch.no_grad():
''' 1. get id '''
# M = self.trans_matrix.repeat(source.size()[0], 1, 1)
# source = kornia.geometry.transform.warp_affine(source, M, (256, 256))
resize_input = F.interpolate(source, size=112, mode="bilinear", align_corners=True)
id_vector = F.normalize(net_arc(resize_input), dim=-1, p=2)
''' 2. get mouth feature '''
if mouth_net is not None:
w1, h1, w2, h2 = self.mouth_net_param.get('crop_param')
mouth_input = resize_input[:, :, h1:h2, w1:w2]
mouth_feat = mouth_net(mouth_input)
id_vector = torch.cat([id_vector, mouth_feat], dim=-1) # (B,dim_id+dim_mouth)
skip1 = self.first_layer(x)
skip2 = self.down1(skip1)
skip3 = self.down2(skip2)
if self.deep:
skip4 = self.down3(skip3)
x = self.down4(skip4)
else:
x = self.down3(skip3)
bot = []
bot.append(x)
features = []
for i in range(len(self.BottleNeck)):
x = self.BottleNeck[i](x, id_vector)
bot.append(x)
if self.deep:
x = self.up4(x)
features.append(x)
x = self.up3(x)
features.append(x)
x = self.up2(x)
features.append(x)
x = self.up1(x)
features.append(x)
x = self.last_layer(x)
# x = (x + 1) / 2
# return x, bot, features, dlatents
return x
if __name__ == "__main__":
import thop
img = torch.randn(1, 3, 256, 256)
latent = torch.randn(1, 512)
net = Generator_Adain_Upsample(input_nc=3, output_nc=3, latent_size=512, n_blocks=9,
mouth_net_param={"use": False})
flops, params = thop.profile(net, inputs=(latent, img, None, None), verbose=False)
print('#Params=%.2fM, GFLOPS=%.2f' % (params / 1e6, flops / 1e9))