File size: 4,623 Bytes
a104d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import torch
import torch.nn as nn
import torchvision


def weights_init(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


class MultiscaleDiscriminator(nn.Module):
    def __init__(
        self,
        input_nc,
        ndf=64,
        n_layers=3,
        norm_layer=nn.BatchNorm2d,
        use_sigmoid=False,
        num_D=3,
        getIntermFeat=False,
        finetune=False,
    ):
        super(MultiscaleDiscriminator, self).__init__()
        self.num_D = num_D
        self.n_layers = n_layers
        self.getIntermFeat = getIntermFeat

        for i in range(num_D):
            netD = NLayerDiscriminator(
                input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat
            )
            if getIntermFeat:
                for j in range(n_layers + 2):
                    setattr(
                        self,
                        "scale" + str(i) + "_layer" + str(j),
                        getattr(netD, "model" + str(j)),
                    )
            else:
                setattr(self, "layer" + str(i), netD.model)

        self.downsample = nn.AvgPool2d(
            3, stride=2, padding=[1, 1], count_include_pad=False
        )
        weights_init(self)

        if finetune:
            self.requires_grad_(False)
            for name, param in self.named_parameters():
                if 'layer0' in name:
                    param.requires_grad = True

    def singleD_forward(self, model, input):
        if self.getIntermFeat:
            result = [input]
            for i in range(len(model)):
                result.append(model[i](result[-1]))
            return result[1:]
        else:
            return [model(input)]

    def forward(self, input):
        num_D = self.num_D
        result = []
        input_downsampled = input
        for i in range(num_D):
            if self.getIntermFeat:
                model = [
                    getattr(self, "scale" + str(num_D - 1 - i) + "_layer" + str(j))
                    for j in range(self.n_layers + 2)
                ]
            else:
                model = getattr(self, "layer" + str(num_D - 1 - i))
            result.append(self.singleD_forward(model, input_downsampled))
            if i != (num_D - 1):
                input_downsampled = self.downsample(input_downsampled)
        return result


# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(nn.Module):
    def __init__(
        self,
        input_nc,
        ndf=64,
        n_layers=3,
        norm_layer=nn.BatchNorm2d,
        use_sigmoid=False,
        getIntermFeat=False,
    ):
        super(NLayerDiscriminator, self).__init__()
        self.getIntermFeat = getIntermFeat
        self.n_layers = n_layers

        kw = 4
        padw = int(np.ceil((kw - 1.0) / 2))
        sequence = [
            [
                nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
                nn.LeakyReLU(0.2, True),
            ]
        ]

        nf = ndf
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)
            sequence += [
                [
                    nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
                    norm_layer(nf),
                    nn.LeakyReLU(0.2, True),
                ]
            ]

        nf_prev = nf
        nf = min(nf * 2, 512)
        sequence += [
            [
                nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
                norm_layer(nf),
                nn.LeakyReLU(0.2, True),
            ]
        ]

        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        if use_sigmoid:
            sequence += [[nn.Sigmoid()]]

        if getIntermFeat:
            for n in range(len(sequence)):
                setattr(self, "model" + str(n), nn.Sequential(*sequence[n]))
        else:
            sequence_stream = []
            for n in range(len(sequence)):
                sequence_stream += sequence[n]
            self.model = nn.Sequential(*sequence_stream)

    def forward(self, input):
        if self.getIntermFeat:
            res = [input]
            for n in range(self.n_layers + 2):
                model = getattr(self, "model" + str(n))
                res.append(model(res[-1]))
            return res[1:]
        else:
            return self.model(input)