File size: 9,685 Bytes
b38122e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Estimate head pose according to the facial landmarks"""
import cv2
import numpy as np


class PoseEstimator:
    """Estimate head pose according to the facial landmarks"""

    def __init__(self, image_width, image_height):
        """Init a pose estimator.



        Args:

            image_width (int): input image width

            image_height (int): input image height

        """
        self.size = (image_height, image_width)
        self.model_points_68 = self._get_full_model_points()

        # Camera internals
        self.focal_length = self.size[1]
        self.camera_center = (self.size[1] / 2, self.size[0] / 2)
        self.camera_matrix = np.array(
            [[self.focal_length, 0, self.camera_center[0]],
             [0, self.focal_length, self.camera_center[1]],
             [0, 0, 1]], dtype="double")

        # Assuming no lens distortion
        self.dist_coeefs = np.zeros((4, 1))

        # Rotation vector and translation vector
        self.r_vec = np.array([[0.01891013], [0.08560084], [-3.14392813]])
        self.t_vec = np.array(
            [[-14.97821226], [-10.62040383], [-2053.03596872]])

    def _get_full_model_points(self, filename='assets/model.txt'):
        """Get all 68 3D model points from file"""
        raw_value = []
        with open(filename) as file:
            for line in file:
                raw_value.append(line)
        model_points = np.array(raw_value, dtype=np.float32)
        model_points = np.reshape(model_points, (3, -1)).T

        # Transform the model into a front view.
        model_points[:, 2] *= -1

        return model_points

    def solve(self, points):
        """Solve pose with all the 68 image points

        Args:

            points (np.ndarray): points on image.



        Returns:

            Tuple: (rotation_vector, translation_vector) as pose.

        """

        if self.r_vec is None:
            (_, rotation_vector, translation_vector) = cv2.solvePnP(
                self.model_points_68, points, self.camera_matrix, self.dist_coeefs)
            self.r_vec = rotation_vector
            self.t_vec = translation_vector

        (_, rotation_vector, translation_vector) = cv2.solvePnP(
            self.model_points_68,
            points,
            self.camera_matrix,
            self.dist_coeefs,
            rvec=self.r_vec,
            tvec=self.t_vec,
            useExtrinsicGuess=True)

        return (rotation_vector, translation_vector)

    def visualize(self, image, pose, color=(255, 255, 255), line_width=2):
        """Draw a 3D box as annotation of pose"""
        rotation_vector, translation_vector = pose
        point_3d = []
        rear_size = 75
        rear_depth = 0
        point_3d.append((-rear_size, -rear_size, rear_depth))
        point_3d.append((-rear_size, rear_size, rear_depth))
        point_3d.append((rear_size, rear_size, rear_depth))
        point_3d.append((rear_size, -rear_size, rear_depth))
        point_3d.append((-rear_size, -rear_size, rear_depth))

        front_size = 100
        front_depth = 100
        point_3d.append((-front_size, -front_size, front_depth))
        point_3d.append((-front_size, front_size, front_depth))
        point_3d.append((front_size, front_size, front_depth))
        point_3d.append((front_size, -front_size, front_depth))
        point_3d.append((-front_size, -front_size, front_depth))
        point_3d = np.array(point_3d, dtype=np.float32).reshape(-1, 3)

        # Map to 2d image points
        (point_2d, _) = cv2.projectPoints(point_3d,
                                          rotation_vector,
                                          translation_vector,
                                          self.camera_matrix,
                                          self.dist_coeefs)
        point_2d = np.int32(point_2d.reshape(-1, 2))

        # Draw all the lines
        cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA)
        cv2.line(image, tuple(point_2d[1]), tuple(
            point_2d[6]), color, line_width, cv2.LINE_AA)
        cv2.line(image, tuple(point_2d[2]), tuple(
            point_2d[7]), color, line_width, cv2.LINE_AA)
        cv2.line(image, tuple(point_2d[3]), tuple(
            point_2d[8]), color, line_width, cv2.LINE_AA)

    def draw_axes(self, img, pose):
        R, t = pose
        img = cv2.drawFrameAxes(img, self.camera_matrix,
                                self.dist_coeefs, R, t, 30)

    def show_3d_model(self):
        from matplotlib import pyplot
        from mpl_toolkits.mplot3d import Axes3D
        fig = pyplot.figure()
        ax = Axes3D(fig)

        x = self.model_points_68[:, 0]
        y = self.model_points_68[:, 1]
        z = self.model_points_68[:, 2]

        ax.scatter(x, y, z)
        ax.axis('square')
        pyplot.xlabel('x')
        pyplot.ylabel('y')
        pyplot.show()

    ###
    # yhm : from chat gpt to detect distraction
    ###
    def rotation_matrix_to_angles(self, rotation_vector):
        """Convert rotation vector to pitch, yaw, and roll angles."""
        rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
        sy = np.sqrt(rotation_matrix[0, 0]**2 + rotation_matrix[1, 0]**2)
        
        singular = sy < 1e-6
        if not singular:
            pitch = np.arctan2(rotation_matrix[2, 1], rotation_matrix[2, 2])
            yaw = np.arctan2(-rotation_matrix[2, 0], sy)
            roll = np.arctan2(rotation_matrix[1, 0], rotation_matrix[0, 0])
        else:
            pitch = np.arctan2(-rotation_matrix[1, 2], rotation_matrix[1, 1])
            yaw = np.arctan2(-rotation_matrix[2, 0], sy)
            roll = 0

        return np.degrees(pitch), np.degrees(yaw), np.degrees(roll)

    def is_distracted(self, rotation_vector):
        """Determine if the user is distracted based on head pose angles."""
        pitch, yaw, roll = self.rotation_matrix_to_angles(rotation_vector)
        
        # Define thresholds (adjust based on further testing)
        pitch_threshold = (-15, 10)  # Allow some variability in pitch
        yaw_threshold = (-20, 16)     # Reasonable range for yaw
        roll_threshold = (-180, 180) # Centered around -180 degree roll
        # print("pitch, yaw, roll", pitch, yaw, roll)
        # Check if head is roughly considered 'facing forward'
        focus_pitch = pitch_threshold[0] < pitch < pitch_threshold[1]
        focus_yaw = yaw_threshold[0] < yaw < yaw_threshold[1]
        focus_roll = roll_threshold[0] < roll < roll_threshold[1]

        return not (focus_pitch and focus_yaw and focus_roll)
    
        # """Determine if the user is distracted based on head pose angles."""
        # pitch, yaw, roll = self.rotation_matrix_to_angles(rotation_vector)
        # print("pitch, yaw, roll", pitch, yaw, roll)
        # # Define thresholds (you may need to adjust these based on testing)
        # pitch_threshold = 15    # Up/Down threshold
        # yaw_threshold = 20      # Left/Right threshold
        # roll_threshold = 10     # Tilt threshold
        
        # # Check if head is facing roughly forward
        # if abs(pitch) < pitch_threshold and abs(yaw) < yaw_threshold and abs(roll) < roll_threshold:
        #     return False  # Focused
        # else:
        #     return True   # Distracted

    def detect_distraction(self, points):
        """Solve pose and detect distraction status based on pose."""
        rotation_vector, translation_vector = self.solve(points)
        distraction_status = self.is_distracted(rotation_vector)
        return distraction_status, (rotation_vector, translation_vector)


    # second part

    # def rotation_matrix_to_angles(self, rotation_vector):
    #     """Convert rotation vector to pitch, yaw, and roll angles."""
    #     # Convert the rotation vector into a rotation matrix
    #     rotation_matrix, _ = cv2.Rodrigues(rotation_vector)
        
    #     # Ensure no division by zero
    #     sy = np.sqrt(rotation_matrix[0, 0]**2 + rotation_matrix[1, 0]**2)
    #     singular = sy < 1e-6

    #     if not singular:
    #         pitch = np.arctan2(rotation_matrix[2, 1], rotation_matrix[2, 2])
    #         yaw = np.arctan2(-rotation_matrix[2, 0], sy)
    #         roll = np.arctan2(rotation_matrix[1, 0], rotation_matrix[0, 0])
    #     else:
    #         pitch = np.arctan2(-rotation_matrix[1, 2], rotation_matrix[1, 1])
    #         yaw = np.arctan2(-rotation_matrix[2, 0], sy)
    #         roll = 0

    #     # Return converted angles in degrees
    #     return np.degrees(pitch), np.degrees(yaw), np.degrees(roll)

    # def is_distracted(self, rotation_vector):
    #     """Determine if the user is distracted based on head pose angles."""
    #     pitch, yaw, roll = self.rotation_matrix_to_angles(rotation_vector)
        
    #     # Test different thresholds based on specific requirements
    #     pitch_threshold = 15    # Up/Down 
    #     yaw_threshold = 20      # Left/Right
    #     roll_threshold = 10     # Tilt

    #     # Determine distraction status
    #     return not (abs(pitch) < pitch_threshold and abs(yaw) < yaw_threshold and abs(roll) < roll_threshold)

    # def detect_distraction(self, points):
    #     """Solve pose and detect distraction status based on pose."""
    #     rotation_vector, translation_vector = self.solve(points)
    #     distraction_status = self.is_distracted(rotation_vector)
    #     return distraction_status, (rotation_vector, translation_vector)