Spaces:
Sleeping
Sleeping
File size: 5,335 Bytes
86694c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import json
import random
from dataclasses import dataclass
from pickle import dump
from typing import Dict, List, Sequence, Tuple
import numpy as np
"""
A setting for a parameter, with its oneHOT encoding
"""
@dataclass
class ParamValue:
name: str
value: float
encoding: List[float]
"""
A sample point - the parameter values, the oneHOT encoding and the audio
"""
@dataclass
class Sample:
# parameter_values: List[Tuple[str,float]]
# parameter_encoding:List[List[float]]
parameters: List[ParamValue]
# length:float=0.1
# sample_rate:int = 44100
# audio:np.ndarray = np.zeros(1)
def value_list(self) -> List[Tuple[str, float]]:
return [(p.name, p.value) for p in self.parameters]
def encode(self) -> List[float]:
return np.hstack([p.encoding for p in self.parameters])
class Parameter:
def __init__(self, name: str, levels: list, id=""):
self.name = name
self.levels = levels
self.id = id
def get_levels(self) -> List[ParamValue]:
return [self.get_value(i) for i in range(len(self.levels))]
def sample(self) -> ParamValue:
index: int = random.choice(range(len(self.levels)))
return self.get_value(index)
def get_value(self, index: int) -> ParamValue:
encoding = np.zeros(len(self.levels)).astype(float)
encoding[index] = 1.0
return ParamValue(
name=self.name,
# Actual value
value=self.levels[index],
# One HOT encoding
encoding=encoding,
)
def decode(self, one_hot: List[float]) -> ParamValue:
ind = np.array(one_hot).argmax()
# ind = tf.cast(tf.argmax(one_hot, axis=-1), "int32")
return self.get_value(ind)
def from_output(
self, current_output: List[float]
) -> Tuple[ParamValue, List[float]]:
param_data = current_output[: len(self.levels)]
remaining = current_output[len(self.levels) :]
my_val = self.decode(param_data)
return (my_val, remaining)
def to_json(self):
return {"name": self.name, "levels": self.levels, "id": self.id}
class ParameterSet:
def __init__(self, parameters: List[Parameter], fixed_parameters: dict = {}):
self.parameters = parameters
self.fixed_parameters = fixed_parameters
def sample_space(self, sample_size=2000) -> Sequence[Sample]:
print("Sampling {} points from parameter space".format(sample_size))
dataset = []
for i in range(sample_size):
params = [p.sample() for p in self.parameters]
dataset.append(Sample(params))
if i % 1000 == 0:
print("Sampling iteration: {}".format(i))
return dataset
# Runs through the whole parameter space, setting up parameters and calling the generation function
# Excuse slightly hacky recusions - sure there's a more numpy-ish way to do it!
def recursively_generate_all(
self, parameter_list: list = None, parameter_set=[], return_list=[]
) -> Sequence[Sample]:
print("Generating entire parameter space")
if parameter_list is None:
parameter_list = self.parameters
param = parameter_list[0]
remaining = parameter_list[1:]
for p in param.levels:
ps = parameter_set.copy()
ps.append((param.name, p))
if len(remaining) == 0:
return_list.append(ps)
else:
self.recursively_generate_all(remaining, ps, return_list)
return return_list
def to_settings(self, p: Sample):
params = self.fixed_parameters.copy()
params.update(dict(p.value_list()))
return params
def encoding_to_settings(self, output: List[float]) -> Dict[str, float]:
params = self.fixed_parameters.copy()
for p in self.decode(output):
params[p.name] = p.value
return params
def decode(self, output: List[float]) -> List[ParamValue]:
values = []
for p in self.parameters:
v, output = p.from_output(output)
values.append(v)
if len(output) > 0:
print("Leftover output!: {}".format(output))
return values
def save(self, filename):
with open(filename, "wb") as file:
dump(self, file)
def save_json(self, filename):
dump = self.to_json()
with open(filename, "w") as file:
json.dump(dump, file, indent=2)
def explain(self):
levels = 0
for p in self.parameters:
levels += len(p.levels)
return {
"n_variable": len(self.parameters),
"n_fixed": len(self.fixed_parameters),
"levels": levels,
}
def to_json(self):
return {
"parameters": [p.to_json() for p in self.parameters],
"fixed": self.fixed_parameters,
}
"""
Generates evenly spaced parameter values
paper:
The rest of the synthesizer parameters ranges are quantized evenly to 16
classes according to the following ranges ...
For each parameter, the first and last classes correspond to its range limits
"""
def param_range(steps, min, max):
ext = float(max - min)
return [n * ext / (steps - 1) + min for n in range(steps)]
|