File size: 10,275 Bytes
04fbff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn.functional as F

from cotracker.models.core.model_utils import smart_cat, get_points_on_a_grid
from cotracker.models.build_cotracker import build_cotracker


class CoTrackerPredictor(torch.nn.Module):
    def __init__(self, checkpoint="./checkpoints/cotracker2.pth"):
        super().__init__()
        self.support_grid_size = 6
        model = build_cotracker(checkpoint)
        self.interp_shape = model.model_resolution
        self.model = model
        self.model.eval()

    @torch.no_grad()
    def forward(
        self,
        video,  # (B, T, 3, H, W)
        # input prompt types:
        # - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame.
        # *backward_tracking=True* will compute tracks in both directions.
        # - queries. Queried points of shape (B, N, 3) in format (t, x, y) for frame index and pixel coordinates.
        # - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask.
        # You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks.
        queries: torch.Tensor = None,
        segm_mask: torch.Tensor = None,  # Segmentation mask of shape (B, 1, H, W)
        grid_size: int = 0,
        grid_query_frame: int = 0,  # only for dense and regular grid tracks
        backward_tracking: bool = False,
    ):
        if queries is None and grid_size == 0:
            tracks, visibilities = self._compute_dense_tracks(
                video,
                grid_query_frame=grid_query_frame,
                backward_tracking=backward_tracking,
            )
        else:
            tracks, visibilities = self._compute_sparse_tracks(
                video,
                queries,
                segm_mask,
                grid_size,
                add_support_grid=(grid_size == 0 or segm_mask is not None),
                grid_query_frame=grid_query_frame,
                backward_tracking=backward_tracking,
            )

        return tracks, visibilities

    def _compute_dense_tracks(self, video, grid_query_frame, grid_size=80, backward_tracking=False):
        *_, H, W = video.shape
        grid_step = W // grid_size
        grid_width = W // grid_step
        grid_height = H // grid_step
        tracks = visibilities = None
        grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device)
        grid_pts[0, :, 0] = grid_query_frame
        for offset in range(grid_step * grid_step):
            print(f"step {offset} / {grid_step * grid_step}")
            ox = offset % grid_step
            oy = offset // grid_step
            grid_pts[0, :, 1] = torch.arange(grid_width).repeat(grid_height) * grid_step + ox
            grid_pts[0, :, 2] = (
                torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy
            )
            tracks_step, visibilities_step = self._compute_sparse_tracks(
                video=video,
                queries=grid_pts,
                backward_tracking=backward_tracking,
            )
            tracks = smart_cat(tracks, tracks_step, dim=2)
            visibilities = smart_cat(visibilities, visibilities_step, dim=2)

        return tracks, visibilities

    def _compute_sparse_tracks(
        self,
        video,
        queries,
        segm_mask=None,
        grid_size=0,
        add_support_grid=False,
        grid_query_frame=0,
        backward_tracking=False,
    ):
        B, T, C, H, W = video.shape

        video = video.reshape(B * T, C, H, W)
        video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True)
        video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1])

        if queries is not None:
            B, N, D = queries.shape
            assert D == 3
            queries = queries.clone()
            queries[:, :, 1:] *= queries.new_tensor(
                [
                    (self.interp_shape[1] - 1) / (W - 1),
                    (self.interp_shape[0] - 1) / (H - 1),
                ]
            )
        elif grid_size > 0:
            grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device)
            if segm_mask is not None:
                segm_mask = F.interpolate(segm_mask, tuple(self.interp_shape), mode="nearest")
                point_mask = segm_mask[0, 0][
                    (grid_pts[0, :, 1]).round().long().cpu(),
                    (grid_pts[0, :, 0]).round().long().cpu(),
                ].bool()
                grid_pts = grid_pts[:, point_mask]

            queries = torch.cat(
                [torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts],
                dim=2,
            ).repeat(B, 1, 1)

        if add_support_grid:
            grid_pts = get_points_on_a_grid(
                self.support_grid_size, self.interp_shape, device=video.device
            )
            grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)
            grid_pts = grid_pts.repeat(B, 1, 1)
            queries = torch.cat([queries, grid_pts], dim=1)

        tracks, visibilities, __ = self.model.forward(video=video, queries=queries, iters=6)

        if backward_tracking:
            tracks, visibilities = self._compute_backward_tracks(
                video, queries, tracks, visibilities
            )
            if add_support_grid:
                queries[:, -self.support_grid_size**2 :, 0] = T - 1
        if add_support_grid:
            tracks = tracks[:, :, : -self.support_grid_size**2]
            visibilities = visibilities[:, :, : -self.support_grid_size**2]
        thr = 0.9
        visibilities = visibilities > thr

        # correct query-point predictions
        # see https://github.com/facebookresearch/co-tracker/issues/28

        # TODO: batchify
        for i in range(len(queries)):
            queries_t = queries[i, : tracks.size(2), 0].to(torch.int64)
            arange = torch.arange(0, len(queries_t))

            # overwrite the predictions with the query points
            tracks[i, queries_t, arange] = queries[i, : tracks.size(2), 1:]

            # correct visibilities, the query points should be visible
            visibilities[i, queries_t, arange] = True

        tracks *= tracks.new_tensor(
            [(W - 1) / (self.interp_shape[1] - 1), (H - 1) / (self.interp_shape[0] - 1)]
        )
        return tracks, visibilities

    def _compute_backward_tracks(self, video, queries, tracks, visibilities):
        inv_video = video.flip(1).clone()
        inv_queries = queries.clone()
        inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1

        inv_tracks, inv_visibilities, __ = self.model(video=inv_video, queries=inv_queries, iters=6)

        inv_tracks = inv_tracks.flip(1)
        inv_visibilities = inv_visibilities.flip(1)
        arange = torch.arange(video.shape[1], device=queries.device)[None, :, None]

        mask = (arange < queries[:, None, :, 0]).unsqueeze(-1).repeat(1, 1, 1, 2)

        tracks[mask] = inv_tracks[mask]
        visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]]
        return tracks, visibilities


class CoTrackerOnlinePredictor(torch.nn.Module):
    def __init__(self, checkpoint="./checkpoints/cotracker2.pth"):
        super().__init__()
        self.support_grid_size = 6
        model = build_cotracker(checkpoint)
        self.interp_shape = model.model_resolution
        self.step = model.window_len // 2
        self.model = model
        self.model.eval()

    @torch.no_grad()
    def forward(
        self,
        video_chunk,
        is_first_step: bool = False,
        queries: torch.Tensor = None,
        grid_size: int = 10,
        grid_query_frame: int = 0,
        add_support_grid=False,
    ):
        B, T, C, H, W = video_chunk.shape
        # Initialize online video processing and save queried points
        # This needs to be done before processing *each new video*
        if is_first_step:
            self.model.init_video_online_processing()
            if queries is not None:
                B, N, D = queries.shape
                assert D == 3
                queries = queries.clone()
                queries[:, :, 1:] *= queries.new_tensor(
                    [
                        (self.interp_shape[1] - 1) / (W - 1),
                        (self.interp_shape[0] - 1) / (H - 1),
                    ]
                )
            elif grid_size > 0:
                grid_pts = get_points_on_a_grid(
                    grid_size, self.interp_shape, device=video_chunk.device
                )
                queries = torch.cat(
                    [torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts],
                    dim=2,
                )
            if add_support_grid:
                grid_pts = get_points_on_a_grid(
                    self.support_grid_size, self.interp_shape, device=video_chunk.device
                )
                grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)
                queries = torch.cat([queries, grid_pts], dim=1)
            self.queries = queries
            return (None, None)

        video_chunk = video_chunk.reshape(B * T, C, H, W)
        video_chunk = F.interpolate(
            video_chunk, tuple(self.interp_shape), mode="bilinear", align_corners=True
        )
        video_chunk = video_chunk.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1])

        tracks, visibilities, __ = self.model(
            video=video_chunk,
            queries=self.queries,
            iters=6,
            is_online=True,
        )
        thr = 0.9
        return (
            tracks
            * tracks.new_tensor(
                [
                    (W - 1) / (self.interp_shape[1] - 1),
                    (H - 1) / (self.interp_shape[0] - 1),
                ]
            ),
            visibilities > thr,
        )