|
import boto3 |
|
from PIL import Image |
|
import pandas as pd |
|
import streamlit as st |
|
import random |
|
import io |
|
|
|
s3_client = boto3.client('s3', |
|
aws_access_key_id=st.secrets["aws_access_key_id"], |
|
aws_secret_access_key=st.secrets["aws_secret_access_key"], |
|
region_name='eu-west-3') |
|
bucket_name = "sygma-global-data-storage" |
|
folder = "car-damage-detection/scrappedImages/" |
|
|
|
csv_folder = "car-damage-detection/CSVs/" |
|
s3_df_path = csv_folder + "70k_old_annotations_fixed.csv" |
|
response = s3_client.get_object(Bucket=bucket_name, Key=s3_df_path) |
|
with io.BytesIO(response['Body'].read()) as bio: |
|
df = pd.read_csv(bio, low_memory=False) |
|
df = df[df['s3_available'] == True] |
|
|
|
def get_car_parts_count(): |
|
car_parts = df.columns[6:] |
|
|
|
car_parts_count = {part: len(df[df[part] > 0]) for part in car_parts} |
|
return [f"{part} ({count})" for part, count in car_parts_count.items()] |
|
|
|
def get_random_image(parts_filter=False): |
|
not_validated_imgs = df[df["validated"] == False]["img_name"].tolist() |
|
if parts_filter: |
|
|
|
parts_filter = [part.split(" (")[0] for part in parts_filter] |
|
|
|
filtered_imgs = df[(df[parts_filter] > 0).all(axis=1)]["img_name"].tolist() |
|
not_validated_imgs = list(set(not_validated_imgs) & set(filtered_imgs)) |
|
if len(not_validated_imgs) == 0: |
|
return None, None |
|
image_name = random.choice(not_validated_imgs) |
|
s3_image_path = folder + image_name |
|
try: |
|
response = s3_client.get_object(Bucket=bucket_name, Key=s3_image_path) |
|
image = Image.open(io.BytesIO(response['Body'].read())).resize((1000, 800)) |
|
return image, image_name |
|
except: |
|
return get_random_image() |
|
|
|
def get_img_damages(img_name): |
|
img_row = df.loc[df["img_name"] == img_name] |
|
damages = img_row.iloc[0, 6:].to_dict() |
|
return damages |
|
|
|
def process_image(img_name, annotator_name, is_car, skip, rotation, damaged_parts): |
|
df.loc[df["img_name"] == img_name, "annotator_name"] = annotator_name |
|
df.loc[df["img_name"] == img_name, "is_car"] = is_car |
|
df.loc[df["img_name"] == img_name, "rotation"] = rotation |
|
if not skip: |
|
df.loc[df["img_name"] == img_name, damaged_parts.keys()] = damaged_parts.values() |
|
df.loc[df["img_name"] == img_name, "validated"] = not skip |
|
|
|
s3_client.put_object(Bucket=bucket_name, Key=s3_df_path, Body=df.to_csv(index=False)) |