Spaces:
Runtime error
Runtime error
# python3.7 | |
"""Contains the generator class of ProgressiveGAN. | |
Basically, this class is derived from the `BaseGenerator` class defined in | |
`base_generator.py`. | |
""" | |
import os | |
import numpy as np | |
import torch | |
from . import model_settings | |
from .pggan_generator_model import PGGANGeneratorModel | |
from .base_generator import BaseGenerator | |
__all__ = ['PGGANGenerator'] | |
class PGGANGenerator(BaseGenerator): | |
"""Defines the generator class of ProgressiveGAN.""" | |
def __init__(self, model_name, logger=None): | |
super().__init__(model_name, logger) | |
assert self.gan_type == 'pggan' | |
def build(self): | |
self.check_attr('fused_scale') | |
self.model = PGGANGeneratorModel(resolution=self.resolution, | |
fused_scale=self.fused_scale, | |
output_channels=self.output_channels) | |
def load(self): | |
self.logger.info(f'Loading pytorch model from `{self.model_path}`.') | |
self.model.load_state_dict(torch.load(self.model_path)) | |
self.logger.info(f'Successfully loaded!') | |
self.lod = self.model.lod.to(self.cpu_device).tolist() | |
self.logger.info(f' `lod` of the loaded model is {self.lod}.') | |
def convert_tf_model(self, test_num=10): | |
import sys | |
import pickle | |
import tensorflow as tf | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
sys.path.append(model_settings.BASE_DIR + '/pggan_tf_official') | |
self.logger.info(f'Loading tensorflow model from `{self.tf_model_path}`.') | |
tf.InteractiveSession() | |
with open(self.tf_model_path, 'rb') as f: | |
_, _, tf_model = pickle.load(f) | |
self.logger.info(f'Successfully loaded!') | |
self.logger.info(f'Converting tensorflow model to pytorch version.') | |
tf_vars = dict(tf_model.__getstate__()['variables']) | |
state_dict = self.model.state_dict() | |
for pth_var_name, tf_var_name in self.model.pth_to_tf_var_mapping.items(): | |
if 'ToRGB_lod' in tf_var_name: | |
lod = int(tf_var_name[len('ToRGB_lod')]) | |
lod_shift = 10 - int(np.log2(self.resolution)) | |
tf_var_name = tf_var_name.replace(f'{lod}', f'{lod - lod_shift}') | |
if tf_var_name not in tf_vars: | |
self.logger.debug(f'Variable `{tf_var_name}` does not exist in ' | |
f'tensorflow model.') | |
continue | |
self.logger.debug(f' Converting `{tf_var_name}` to `{pth_var_name}`.') | |
var = torch.from_numpy(np.array(tf_vars[tf_var_name])) | |
if 'weight' in pth_var_name: | |
if 'layer0.conv' in pth_var_name: | |
var = var.view(var.shape[0], -1, 4, 4).permute(1, 0, 2, 3).flip(2, 3) | |
elif 'Conv0_up' in tf_var_name: | |
var = var.permute(0, 1, 3, 2) | |
else: | |
var = var.permute(3, 2, 0, 1) | |
state_dict[pth_var_name] = var | |
self.logger.info(f'Successfully converted!') | |
self.logger.info(f'Saving pytorch model to `{self.model_path}`.') | |
torch.save(state_dict, self.model_path) | |
self.logger.info(f'Successfully saved!') | |
self.load() | |
# Official tensorflow model can only run on GPU. | |
if test_num <= 0 or not tf.test.is_built_with_cuda(): | |
return | |
self.logger.info(f'Testing conversion results.') | |
self.model.eval().to(self.run_device) | |
label_dim = tf_model.input_shapes[1][1] | |
tf_fake_label = np.zeros((1, label_dim), np.float32) | |
total_distance = 0.0 | |
for i in range(test_num): | |
latent_code = self.easy_sample(1) | |
tf_output = tf_model.run(latent_code, tf_fake_label) | |
pth_output = self.synthesize(latent_code)['image'] | |
distance = np.average(np.abs(tf_output - pth_output)) | |
self.logger.debug(f' Test {i:03d}: distance {distance:.6e}.') | |
total_distance += distance | |
self.logger.info(f'Average distance is {total_distance / test_num:.6e}.') | |
def sample(self, num): | |
assert num > 0 | |
return np.random.randn(num, self.latent_space_dim).astype(np.float32) | |
def preprocess(self, latent_codes): | |
if not isinstance(latent_codes, np.ndarray): | |
raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') | |
latent_codes = latent_codes.reshape(-1, self.latent_space_dim) | |
norm = np.linalg.norm(latent_codes, axis=1, keepdims=True) | |
latent_codes = latent_codes / norm * np.sqrt(self.latent_space_dim) | |
return latent_codes.astype(np.float32) | |
def synthesize(self, latent_codes): | |
if not isinstance(latent_codes, np.ndarray): | |
raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') | |
latent_codes_shape = latent_codes.shape | |
if not (len(latent_codes_shape) == 2 and | |
latent_codes_shape[0] <= self.batch_size and | |
latent_codes_shape[1] == self.latent_space_dim): | |
raise ValueError(f'Latent_codes should be with shape [batch_size, ' | |
f'latent_space_dim], where `batch_size` no larger than ' | |
f'{self.batch_size}, and `latent_space_dim` equal to ' | |
f'{self.latent_space_dim}!\n' | |
f'But {latent_codes_shape} received!') | |
zs = torch.from_numpy(latent_codes).type(torch.FloatTensor) | |
zs = zs.to(self.run_device) | |
images = self.model(zs) | |
results = { | |
'z': latent_codes, | |
'image': self.get_value(images), | |
} | |
return results | |