interfacegan_pp / models /pggan_generator.py
ybelkada's picture
commit files
4d6b877
raw
history blame
5.22 kB
# python3.7
"""Contains the generator class of ProgressiveGAN.
Basically, this class is derived from the `BaseGenerator` class defined in
`base_generator.py`.
"""
import os
import numpy as np
import torch
from . import model_settings
from .pggan_generator_model import PGGANGeneratorModel
from .base_generator import BaseGenerator
__all__ = ['PGGANGenerator']
class PGGANGenerator(BaseGenerator):
"""Defines the generator class of ProgressiveGAN."""
def __init__(self, model_name, logger=None):
super().__init__(model_name, logger)
assert self.gan_type == 'pggan'
def build(self):
self.check_attr('fused_scale')
self.model = PGGANGeneratorModel(resolution=self.resolution,
fused_scale=self.fused_scale,
output_channels=self.output_channels)
def load(self):
self.logger.info(f'Loading pytorch model from `{self.model_path}`.')
self.model.load_state_dict(torch.load(self.model_path))
self.logger.info(f'Successfully loaded!')
self.lod = self.model.lod.to(self.cpu_device).tolist()
self.logger.info(f' `lod` of the loaded model is {self.lod}.')
def convert_tf_model(self, test_num=10):
import sys
import pickle
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
sys.path.append(model_settings.BASE_DIR + '/pggan_tf_official')
self.logger.info(f'Loading tensorflow model from `{self.tf_model_path}`.')
tf.InteractiveSession()
with open(self.tf_model_path, 'rb') as f:
_, _, tf_model = pickle.load(f)
self.logger.info(f'Successfully loaded!')
self.logger.info(f'Converting tensorflow model to pytorch version.')
tf_vars = dict(tf_model.__getstate__()['variables'])
state_dict = self.model.state_dict()
for pth_var_name, tf_var_name in self.model.pth_to_tf_var_mapping.items():
if 'ToRGB_lod' in tf_var_name:
lod = int(tf_var_name[len('ToRGB_lod')])
lod_shift = 10 - int(np.log2(self.resolution))
tf_var_name = tf_var_name.replace(f'{lod}', f'{lod - lod_shift}')
if tf_var_name not in tf_vars:
self.logger.debug(f'Variable `{tf_var_name}` does not exist in '
f'tensorflow model.')
continue
self.logger.debug(f' Converting `{tf_var_name}` to `{pth_var_name}`.')
var = torch.from_numpy(np.array(tf_vars[tf_var_name]))
if 'weight' in pth_var_name:
if 'layer0.conv' in pth_var_name:
var = var.view(var.shape[0], -1, 4, 4).permute(1, 0, 2, 3).flip(2, 3)
elif 'Conv0_up' in tf_var_name:
var = var.permute(0, 1, 3, 2)
else:
var = var.permute(3, 2, 0, 1)
state_dict[pth_var_name] = var
self.logger.info(f'Successfully converted!')
self.logger.info(f'Saving pytorch model to `{self.model_path}`.')
torch.save(state_dict, self.model_path)
self.logger.info(f'Successfully saved!')
self.load()
# Official tensorflow model can only run on GPU.
if test_num <= 0 or not tf.test.is_built_with_cuda():
return
self.logger.info(f'Testing conversion results.')
self.model.eval().to(self.run_device)
label_dim = tf_model.input_shapes[1][1]
tf_fake_label = np.zeros((1, label_dim), np.float32)
total_distance = 0.0
for i in range(test_num):
latent_code = self.easy_sample(1)
tf_output = tf_model.run(latent_code, tf_fake_label)
pth_output = self.synthesize(latent_code)['image']
distance = np.average(np.abs(tf_output - pth_output))
self.logger.debug(f' Test {i:03d}: distance {distance:.6e}.')
total_distance += distance
self.logger.info(f'Average distance is {total_distance / test_num:.6e}.')
def sample(self, num):
assert num > 0
return np.random.randn(num, self.latent_space_dim).astype(np.float32)
def preprocess(self, latent_codes):
if not isinstance(latent_codes, np.ndarray):
raise ValueError(f'Latent codes should be with type `numpy.ndarray`!')
latent_codes = latent_codes.reshape(-1, self.latent_space_dim)
norm = np.linalg.norm(latent_codes, axis=1, keepdims=True)
latent_codes = latent_codes / norm * np.sqrt(self.latent_space_dim)
return latent_codes.astype(np.float32)
def synthesize(self, latent_codes):
if not isinstance(latent_codes, np.ndarray):
raise ValueError(f'Latent codes should be with type `numpy.ndarray`!')
latent_codes_shape = latent_codes.shape
if not (len(latent_codes_shape) == 2 and
latent_codes_shape[0] <= self.batch_size and
latent_codes_shape[1] == self.latent_space_dim):
raise ValueError(f'Latent_codes should be with shape [batch_size, '
f'latent_space_dim], where `batch_size` no larger than '
f'{self.batch_size}, and `latent_space_dim` equal to '
f'{self.latent_space_dim}!\n'
f'But {latent_codes_shape} received!')
zs = torch.from_numpy(latent_codes).type(torch.FloatTensor)
zs = zs.to(self.run_device)
images = self.model(zs)
results = {
'z': latent_codes,
'image': self.get_value(images),
}
return results