Spaces:
Runtime error
Runtime error
File size: 11,980 Bytes
4d6b877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import time
import re
import bisect
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import scipy.ndimage
import scipy.misc
import config
import misc
import tfutil
import train
import dataset
#----------------------------------------------------------------------------
# Generate random images or image grids using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py.
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8):
network_pkl = misc.locate_network_pkl(run_id, snapshot)
if png_prefix is None:
png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
random_state = np.random.RandomState(random_seed)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(run_id, snapshot)
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
for png_idx in range(num_pngs):
print('Generating png %d / %d...' % (png_idx, num_pngs))
latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state)
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Generate MP4 video of random interpolations using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py.
def generate_interpolation_video(run_id, snapshot=None, grid_size=[1,1], image_shrink=1, image_zoom=1, duration_sec=60.0, smoothing_sec=1.0, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M', random_seed=1000, minibatch_size=8):
network_pkl = misc.locate_network_pkl(run_id, snapshot)
if mp4 is None:
mp4 = misc.get_id_string_for_network_pkl(network_pkl) + '-lerp.mp4'
num_frames = int(np.rint(duration_sec * mp4_fps))
random_state = np.random.RandomState(random_seed)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(run_id, snapshot)
print('Generating latent vectors...')
shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component]
all_latents = random_state.randn(*shape).astype(np.float32)
all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap')
all_latents /= np.sqrt(np.mean(np.square(all_latents)))
# Frame generation func for moviepy.
def make_frame(t):
frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1))
latents = all_latents[frame_idx]
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
grid = misc.create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC
if image_zoom > 1:
grid = scipy.ndimage.zoom(grid, [image_zoom, image_zoom, 1], order=0)
if grid.shape[2] == 1:
grid = grid.repeat(3, 2) # grayscale => RGB
return grid
# Generate video.
import moviepy.editor # pip install moviepy
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Generate MP4 video of training progress for a previous training run.
# To run, uncomment the appropriate line in config.py and launch train.py.
def generate_training_video(run_id, duration_sec=20.0, time_warp=1.5, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M'):
src_result_subdir = misc.locate_result_subdir(run_id)
if mp4 is None:
mp4 = os.path.basename(src_result_subdir) + '-train.mp4'
# Parse log.
times = []
snaps = [] # [(png, kimg, lod), ...]
with open(os.path.join(src_result_subdir, 'log.txt'), 'rt') as log:
for line in log:
k = re.search(r'kimg ([\d\.]+) ', line)
l = re.search(r'lod ([\d\.]+) ', line)
t = re.search(r'time (\d+d)? *(\d+h)? *(\d+m)? *(\d+s)? ', line)
if k and l and t:
k = float(k.group(1))
l = float(l.group(1))
t = [int(t.group(i)[:-1]) if t.group(i) else 0 for i in range(1, 5)]
t = t[0] * 24*60*60 + t[1] * 60*60 + t[2] * 60 + t[3]
png = os.path.join(src_result_subdir, 'fakes%06d.png' % int(np.floor(k)))
if os.path.isfile(png):
times.append(t)
snaps.append((png, k, l))
assert len(times)
# Frame generation func for moviepy.
png_cache = [None, None] # [png, img]
def make_frame(t):
wallclock = ((t / duration_sec) ** time_warp) * times[-1]
png, kimg, lod = snaps[max(bisect.bisect(times, wallclock) - 1, 0)]
if png_cache[0] == png:
img = png_cache[1]
else:
img = scipy.misc.imread(png)
while img.shape[1] > 1920 or img.shape[0] > 1080:
img = img.astype(np.float32).reshape(img.shape[0]//2, 2, img.shape[1]//2, 2, -1).mean(axis=(1,3))
png_cache[:] = [png, img]
img = misc.draw_text_label(img, 'lod %.2f' % lod, 16, img.shape[0]-4, alignx=0.0, aligny=1.0)
img = misc.draw_text_label(img, misc.format_time(int(np.rint(wallclock))), img.shape[1]//2, img.shape[0]-4, alignx=0.5, aligny=1.0)
img = misc.draw_text_label(img, '%.0f kimg' % kimg, img.shape[1]-16, img.shape[0]-4, alignx=1.0, aligny=1.0)
return img
# Generate video.
import moviepy.editor # pip install moviepy
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Evaluate one or more metrics for a previous training run.
# To run, uncomment one of the appropriate lines in config.py and launch train.py.
def evaluate_metrics(run_id, log, metrics, num_images, real_passes, minibatch_size=None):
metric_class_names = {
'swd': 'metrics.sliced_wasserstein.API',
'fid': 'metrics.frechet_inception_distance.API',
'is': 'metrics.inception_score.API',
'msssim': 'metrics.ms_ssim.API',
}
# Locate training run and initialize logging.
result_subdir = misc.locate_result_subdir(run_id)
snapshot_pkls = misc.list_network_pkls(result_subdir, include_final=False)
assert len(snapshot_pkls) >= 1
log_file = os.path.join(result_subdir, log)
print('Logging output to', log_file)
misc.set_output_log_file(log_file)
# Initialize dataset and select minibatch size.
dataset_obj, mirror_augment = misc.load_dataset_for_previous_run(result_subdir, verbose=True, shuffle_mb=0)
if minibatch_size is None:
minibatch_size = np.clip(8192 // dataset_obj.shape[1], 4, 256)
# Initialize metrics.
metric_objs = []
for name in metrics:
class_name = metric_class_names.get(name, name)
print('Initializing %s...' % class_name)
class_def = tfutil.import_obj(class_name)
image_shape = [3] + dataset_obj.shape[1:]
obj = class_def(num_images=num_images, image_shape=image_shape, image_dtype=np.uint8, minibatch_size=minibatch_size)
tfutil.init_uninited_vars()
mode = 'warmup'
obj.begin(mode)
for idx in range(10):
obj.feed(mode, np.random.randint(0, 256, size=[minibatch_size]+image_shape, dtype=np.uint8))
obj.end(mode)
metric_objs.append(obj)
# Print table header.
print()
print('%-10s%-12s' % ('Snapshot', 'Time_eval'), end='')
for obj in metric_objs:
for name, fmt in zip(obj.get_metric_names(), obj.get_metric_formatting()):
print('%-*s' % (len(fmt % 0), name), end='')
print()
print('%-10s%-12s' % ('---', '---'), end='')
for obj in metric_objs:
for fmt in obj.get_metric_formatting():
print('%-*s' % (len(fmt % 0), '---'), end='')
print()
# Feed in reals.
for title, mode in [('Reals', 'reals'), ('Reals2', 'fakes')][:real_passes]:
print('%-10s' % title, end='')
time_begin = time.time()
labels = np.zeros([num_images, dataset_obj.label_size], dtype=np.float32)
[obj.begin(mode) for obj in metric_objs]
for begin in range(0, num_images, minibatch_size):
end = min(begin + minibatch_size, num_images)
images, labels[begin:end] = dataset_obj.get_minibatch_np(end - begin)
if mirror_augment:
images = misc.apply_mirror_augment(images)
if images.shape[1] == 1:
images = np.tile(images, [1, 3, 1, 1]) # grayscale => RGB
[obj.feed(mode, images) for obj in metric_objs]
results = [obj.end(mode) for obj in metric_objs]
print('%-12s' % misc.format_time(time.time() - time_begin), end='')
for obj, vals in zip(metric_objs, results):
for val, fmt in zip(vals, obj.get_metric_formatting()):
print(fmt % val, end='')
print()
# Evaluate each network snapshot.
for snapshot_idx, snapshot_pkl in enumerate(reversed(snapshot_pkls)):
prefix = 'network-snapshot-'; postfix = '.pkl'
snapshot_name = os.path.basename(snapshot_pkl)
assert snapshot_name.startswith(prefix) and snapshot_name.endswith(postfix)
snapshot_kimg = int(snapshot_name[len(prefix) : -len(postfix)])
print('%-10d' % snapshot_kimg, end='')
mode ='fakes'
[obj.begin(mode) for obj in metric_objs]
time_begin = time.time()
with tf.Graph().as_default(), tfutil.create_session(config.tf_config).as_default():
G, D, Gs = misc.load_pkl(snapshot_pkl)
for begin in range(0, num_images, minibatch_size):
end = min(begin + minibatch_size, num_images)
latents = misc.random_latents(end - begin, Gs)
images = Gs.run(latents, labels[begin:end], num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_dtype=np.uint8)
if images.shape[1] == 1:
images = np.tile(images, [1, 3, 1, 1]) # grayscale => RGB
[obj.feed(mode, images) for obj in metric_objs]
results = [obj.end(mode) for obj in metric_objs]
print('%-12s' % misc.format_time(time.time() - time_begin), end='')
for obj, vals in zip(metric_objs, results):
for val, fmt in zip(vals, obj.get_metric_formatting()):
print(fmt % val, end='')
print()
print()
#----------------------------------------------------------------------------
|