File size: 2,839 Bytes
4d6b877
 
 
 
 
 
 
 
 
 
 
4ae241e
b260763
4d6b877
 
 
 
 
 
 
 
 
 
 
 
b260763
 
 
 
 
 
a813ad5
b260763
 
4d6b877
 
 
 
 
 
 
 
 
 
b260763
 
4d6b877
 
 
 
b260763
4d6b877
b260763
4d6b877
4ae241e
 
4d6b877
 
 
 
 
 
 
b260763
09ef29c
4d6b877
 
 
 
 
b58734b
09ef29c
4d6b877
b260763
 
 
 
 
 
 
7bf4347
 
 
 
 
 
 
4d6b877
 
 
8279921
7bf4347
 
4ae241e
 
4d6b877
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os

import torch
import PIL.Image
import numpy as np
import gradio as gr
from yarg import get

from models.stylegan_generator import StyleGANGenerator
from models.stylegan2_generator import StyleGAN2Generator

from utils.constants import VALID_CHOICES, ENABLE_GPU, MODEL_NAME, OUTPUT_LIST, description, title, css, article
from utils.image_manip import tensor_to_pil, concat_images

def get_generator(model_name):
    if model_name == 'stylegan_ffhq':
        generator = StyleGANGenerator(model_name)
    elif model_name == 'stylegan2_ffhq':
        generator = StyleGAN2Generator(model_name)
    else:
        raise ValueError('Model name not recognized')
    if ENABLE_GPU:
        generator = generator.cuda()
    return generator

generator = get_generator(MODEL_NAME)
boundaries = {
    boundary:np.squeeze(np.load(open(os.path.join('boundaries', MODEL_NAME, 'boundary_%s.npy' % boundary), 'rb'))) 
    for boundary in VALID_CHOICES
}

@torch.no_grad()
def inference(seed, coef, nb_images, list_choices):
    global generator, boundaries
    np.random.seed(seed)
    latent_codes = generator.easy_sample(nb_images)
    if ENABLE_GPU:
        latent_codes = latent_codes.cuda()
        generator = generator.cuda()
    generated_images = generator.easy_synthesize(latent_codes)
    generated_images = tensor_to_pil(generated_images)

    new_latent_codes = latent_codes.copy()
    for i, _ in enumerate(generated_images):
        for choice in list_choices:
            new_latent_codes[i, :] +=  boundaries[choice]*coef

    modified_generated_images = generator.easy_synthesize(new_latent_codes)
    modified_generated_images = tensor_to_pil(modified_generated_images)

    concatenated_output = concat_images(generated_images, modified_generated_images)

    return concatenated_output

# https://huggingface.co/spaces/osanseviero/6DRepNet/blob/main/app.py

iface = gr.Interface(
    fn=inference, 
    inputs=[
        gr.inputs.Slider(
            minimum=0,
            maximum=1000,
            step=1,
            default=644,
            label="Random seed to use for the generation"
        ),
        gr.inputs.Slider(
            minimum=-3,
            maximum=3,
            step=0.1,
            default=1,
            label="Modification coefficient",
        ),
        gr.inputs.Slider(
            minimum=1,
            maximum=10,
            step=1,
            default=2,
            label="Number of images to generate",
        ),
        gr.inputs.CheckboxGroup(
            VALID_CHOICES, 
            default=[], 
            type="value", 
            label="Select attributes to modify", 
            optional=False
        )
    ],
    outputs=OUTPUT_LIST,
    layout="horizontal",
    theme="peach",
    description=description,
    title=title,
    css=css,
    article=article
)
iface.launch()