yasserrmd commited on
Commit
98dfe53
·
verified ·
1 Parent(s): 5ff49bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +169 -171
app.py CHANGED
@@ -1,171 +1,169 @@
1
- import os
2
- import threading
3
- from fastapi import FastAPI, WebSocket, WebSocketDisconnect
4
- from fastapi.responses import FileResponse
5
- from fastapi.staticfiles import StaticFiles
6
- from huggingface_hub import InferenceClient
7
- from concurrent.futures import ThreadPoolExecutor
8
- from fastapi.responses import HTMLResponse
9
- from groq import Groq
10
- import uvicorn
11
- import base64
12
- from io import BytesIO
13
- import os
14
- import requests
15
-
16
- API_URL = "https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection"
17
- headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
18
-
19
- def is_image_safe(data):
20
- try:
21
- response = requests.post(API_URL, headers=headers, data=data)
22
- response.raise_for_status() # Raise an error for HTTP issues
23
- result = response.json()
24
- print(result)
25
-
26
- # Look for the 'nsfw' label and extract its score
27
- nsfw_score = next((item["score"] for item in result if item["label"] == "nsfw"), None)
28
-
29
- # Ensure the 'nsfw' label exists in the response
30
- if nsfw_score is not None:
31
- return nsfw_score < 0.5 # Return True if the NSFW score is less than 0.5
32
- else:
33
- print("Error: 'nsfw' label not found in response.")
34
- return False
35
- except requests.exceptions.RequestException as e:
36
- print(f"Error: Failed to process the request. {e}")
37
- return False
38
-
39
-
40
- app = FastAPI()
41
-
42
- # Serve static files (HTML, CSS, JS)
43
- app.mount("/static", StaticFiles(directory="static"), name="static")
44
-
45
- # Initialize a single Groq client and inference client
46
- client = Groq()
47
- image_gen_client = InferenceClient("black-forest-labs/FLUX.1-schnell")
48
- executor = ThreadPoolExecutor()
49
-
50
- @app.get("/", response_class=FileResponse)
51
- async def get():
52
- return FileResponse("static/index.html")
53
-
54
-
55
- @app.websocket("/ws")
56
- async def websocket_endpoint(websocket: WebSocket):
57
- await websocket.accept()
58
-
59
- def generate_text(input_text):
60
- chat_completion = client.chat.completions.create(
61
- messages=[
62
- {"role": "system", "content": "You are an assistant that generates gratitude journal entries. Focus solely on expressing gratitude in a concise, meaningful tone. Do not include introductory or concluding statements. Avoid unrelated topics or personal opinions. Keep the entries simple, neutral, and directly reflective of gratitude."},
63
- {"role": "user", "content": input_text},
64
- ],
65
- model="llama3-8b-8192",
66
- )
67
- print(chat_completion.choices[0].message.content)
68
- return chat_completion.choices[0].message.content
69
-
70
- def generate_image_prompt(input_text):
71
- chat_completion = client.chat.completions.create(
72
- messages=[
73
- {"role": "system", "content": "You are an assistant that generates image prompts reflecting gratitude journal entries. Create concise, vivid descriptions that visually represent gratitude and positive moments. Avoid adding any introductory or concluding statements. Keep the prompts simple, neutral, and focused solely on the imagery."},
74
- {"role": "user", "content": input_text},
75
- ],
76
- model="llama3-8b-8192",
77
- )
78
- print(chat_completion.choices[0].message.content)
79
- return chat_completion.choices[0].message.content
80
-
81
- def analyze_image(image_data):
82
- completion = client.chat.completions.create(
83
- model="llama-3.2-11b-vision-preview",
84
- messages=[
85
- {
86
- "role": "user",
87
- "content": [
88
- {"type": "text", "text": "Describe the contents of this image for a gratitude journal."},
89
- {"type": "image", "image": image_data},
90
- ],
91
- }
92
- ],
93
- temperature=1,
94
- max_tokens=1024,
95
- top_p=1,
96
- stream=False,
97
- stop=None,
98
- )
99
- print(completion.choices[0].message.content)
100
- return completion.choices[0].message.content
101
-
102
- def handle_text_to_speech(audio_data):
103
- transcription = client.audio.transcriptions.create(
104
- file=("audio.mp3", audio_data),
105
- model="whisper-large-v3-turbo",
106
- response_format="json",
107
- language="en",
108
- )
109
- return transcription.text
110
-
111
- def generate_image(prompt):
112
- print(prompt)
113
- return image_gen_client.text_to_image(prompt)
114
-
115
- try:
116
- while True:
117
- data = await websocket.receive_json()
118
- input_text = data.get("text", "")
119
- input_images = data.get("images", [])
120
- input_audio = data.get("audio", None)
121
-
122
- journal_text = input_text
123
- tasks = []
124
-
125
- # Process images
126
- for image in input_images:
127
- def process_image(image=image):
128
- image_description = analyze_image(image)
129
- nonlocal journal_text
130
- journal_text += f" {image_description}"
131
- tasks.append(executor.submit(process_image))
132
-
133
- # Process audio
134
- if input_audio:
135
- def process_audio():
136
- audio_transcription = handle_text_to_speech(input_audio)
137
- nonlocal journal_text
138
- journal_text += f" {audio_transcription}"
139
- tasks.append(executor.submit(process_audio))
140
-
141
- # Wait for all tasks to complete
142
- for task in tasks:
143
- task.result()
144
-
145
- # Generate journal entry
146
- journal_output = generate_text(journal_text)
147
- journal_image_prompt= generate_image_prompt(journal_text)
148
- await websocket.send_json({"type": "journal", "content": journal_output})
149
- await websocket.send_json({"type": "info", "content": "Gratitude-themed image is being generated"})
150
- image_prompt = f"Generate a gratitude-themed artistic image based on this journal entry: {journal_image_prompt}"
151
- generated_image = generate_image(image_prompt) # This returns a PIL.Image object
152
- print("image generated")
153
-
154
-
155
-
156
- # Convert PIL.Image to Base64
157
- buffered = BytesIO()
158
- generated_image.save(buffered, format="PNG") # Save as PNG or any format you prefer
159
- img_str=""
160
- if is_image_safe(buffered.getvalue()):
161
- img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") # Base64 encode the image
162
-
163
- # Send the image as a base64 string via WebSocket
164
- await websocket.send_json({"type": "image", "image": img_str})
165
-
166
-
167
-
168
- except WebSocketDisconnect:
169
- await websocket.close()
170
- if __name__ == "__main__":
171
- uvicorn.run("app:app", host="0.0.0.0", port=8090, reload=True)
 
1
+ import os
2
+ import threading
3
+ from fastapi import FastAPI, WebSocket, WebSocketDisconnect
4
+ from fastapi.responses import FileResponse
5
+ from fastapi.staticfiles import StaticFiles
6
+ from huggingface_hub import InferenceClient
7
+ from concurrent.futures import ThreadPoolExecutor
8
+ from fastapi.responses import HTMLResponse
9
+ from groq import Groq
10
+ import uvicorn
11
+ import base64
12
+ from io import BytesIO
13
+ import os
14
+ import requests
15
+
16
+ API_URL = "https://api-inference.huggingface.co/models/Falconsai/nsfw_image_detection"
17
+ headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
18
+
19
+ def is_image_safe(data):
20
+ try:
21
+ response = requests.post(API_URL, headers=headers, data=data)
22
+ response.raise_for_status() # Raise an error for HTTP issues
23
+ result = response.json()
24
+ print(result)
25
+
26
+ # Look for the 'nsfw' label and extract its score
27
+ nsfw_score = next((item["score"] for item in result if item["label"] == "nsfw"), None)
28
+
29
+ # Ensure the 'nsfw' label exists in the response
30
+ if nsfw_score is not None:
31
+ return nsfw_score < 0.5 # Return True if the NSFW score is less than 0.5
32
+ else:
33
+ print("Error: 'nsfw' label not found in response.")
34
+ return False
35
+ except requests.exceptions.RequestException as e:
36
+ print(f"Error: Failed to process the request. {e}")
37
+ return False
38
+
39
+
40
+ app = FastAPI()
41
+
42
+ # Serve static files (HTML, CSS, JS)
43
+ app.mount("/static", StaticFiles(directory="static"), name="static")
44
+
45
+ # Initialize a single Groq client and inference client
46
+ client = Groq()
47
+ image_gen_client = InferenceClient("black-forest-labs/FLUX.1-schnell")
48
+ executor = ThreadPoolExecutor()
49
+
50
+ @app.get("/", response_class=FileResponse)
51
+ async def get():
52
+ return FileResponse("static/index.html")
53
+
54
+
55
+ @app.websocket("/ws")
56
+ async def websocket_endpoint(websocket: WebSocket):
57
+ await websocket.accept()
58
+
59
+ def generate_text(input_text):
60
+ chat_completion = client.chat.completions.create(
61
+ messages=[
62
+ {"role": "system", "content": "You are an assistant that generates gratitude journal entries. Focus solely on expressing gratitude in a concise, meaningful tone. Do not include introductory or concluding statements. Avoid unrelated topics or personal opinions. Keep the entries simple, neutral, and directly reflective of gratitude."},
63
+ {"role": "user", "content": input_text},
64
+ ],
65
+ model="llama3-8b-8192",
66
+ )
67
+ print(chat_completion.choices[0].message.content)
68
+ return chat_completion.choices[0].message.content
69
+
70
+ def generate_image_prompt(input_text):
71
+ chat_completion = client.chat.completions.create(
72
+ messages=[
73
+ {"role": "system", "content": "You are an assistant that generates image prompts reflecting gratitude journal entries. Create concise, vivid descriptions that visually represent gratitude and positive moments. Avoid adding any introductory or concluding statements. Keep the prompts simple, neutral, and focused solely on the imagery."},
74
+ {"role": "user", "content": input_text},
75
+ ],
76
+ model="llama3-8b-8192",
77
+ )
78
+ print(chat_completion.choices[0].message.content)
79
+ return chat_completion.choices[0].message.content
80
+
81
+ def analyze_image(image_data):
82
+ completion = client.chat.completions.create(
83
+ model="llama-3.2-11b-vision-preview",
84
+ messages=[
85
+ {
86
+ "role": "user",
87
+ "content": [
88
+ {"type": "text", "text": "Describe the contents of this image for a gratitude journal."},
89
+ {"type": "image", "image": image_data},
90
+ ],
91
+ }
92
+ ],
93
+ temperature=1,
94
+ max_tokens=1024,
95
+ top_p=1,
96
+ stream=False,
97
+ stop=None,
98
+ )
99
+ print(completion.choices[0].message.content)
100
+ return completion.choices[0].message.content
101
+
102
+ def handle_text_to_speech(audio_data):
103
+ transcription = client.audio.transcriptions.create(
104
+ file=("audio.mp3", audio_data),
105
+ model="whisper-large-v3-turbo",
106
+ response_format="json",
107
+ language="en",
108
+ )
109
+ return transcription.text
110
+
111
+ def generate_image(prompt):
112
+ print(prompt)
113
+ return image_gen_client.text_to_image(prompt)
114
+
115
+ try:
116
+ while True:
117
+ data = await websocket.receive_json()
118
+ input_text = data.get("text", "")
119
+ input_images = data.get("images", [])
120
+ input_audio = data.get("audio", None)
121
+
122
+ journal_text = input_text
123
+ tasks = []
124
+
125
+ # Process images
126
+ for image in input_images:
127
+ def process_image(image=image):
128
+ image_description = analyze_image(image)
129
+ nonlocal journal_text
130
+ journal_text += f" {image_description}"
131
+ tasks.append(executor.submit(process_image))
132
+
133
+ # Process audio
134
+ if input_audio:
135
+ def process_audio():
136
+ audio_transcription = handle_text_to_speech(input_audio)
137
+ nonlocal journal_text
138
+ journal_text += f" {audio_transcription}"
139
+ tasks.append(executor.submit(process_audio))
140
+
141
+ # Wait for all tasks to complete
142
+ for task in tasks:
143
+ task.result()
144
+
145
+ # Generate journal entry
146
+ journal_output = generate_text(journal_text)
147
+ journal_image_prompt= generate_image_prompt(journal_text)
148
+ await websocket.send_json({"type": "journal", "content": journal_output})
149
+ await websocket.send_json({"type": "info", "content": "Gratitude-themed image is being generated"})
150
+ image_prompt = f"Generate a gratitude-themed artistic image based on this journal entry: {journal_image_prompt}"
151
+ generated_image = generate_image(image_prompt) # This returns a PIL.Image object
152
+ print("image generated")
153
+
154
+
155
+
156
+ # Convert PIL.Image to Base64
157
+ buffered = BytesIO()
158
+ generated_image.save(buffered, format="PNG") # Save as PNG or any format you prefer
159
+ img_str=""
160
+ if is_image_safe(buffered.getvalue()):
161
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") # Base64 encode the image
162
+
163
+ # Send the image as a base64 string via WebSocket
164
+ await websocket.send_json({"type": "image", "image": img_str})
165
+
166
+
167
+
168
+ except WebSocketDisconnect:
169
+ await websocket.close()