Spaces:
Build error
Build error
Commit
·
b716d57
1
Parent(s):
04dc39e
Create data.py
Browse files
data.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset
|
3 |
+
import pandas as pd
|
4 |
+
import datetime
|
5 |
+
from dateutil.relativedelta import relativedelta
|
6 |
+
|
7 |
+
business_data_path = "yashraizada/yelp-open-dataset-top-businesses"
|
8 |
+
reviews_data_path = "yashraizada/yelp-open-dataset-top-reviews"
|
9 |
+
top_reviews_path = "yashraizada/top-reviews-per-business"
|
10 |
+
users_data_path = "yashraizada/yelp-open-dataset-top-users"
|
11 |
+
|
12 |
+
@st.cache_data
|
13 |
+
def get_business_data(path: str = business_data_path, train_split: int = 100) -> pd.DataFrame:
|
14 |
+
return pd.DataFrame(load_dataset(path, split=f"train[:{train_split}%]"))
|
15 |
+
|
16 |
+
@st.cache_data
|
17 |
+
def get_reviews_data(path: str = reviews_data_path, train_split: int = 100) -> pd.DataFrame:
|
18 |
+
return pd.DataFrame(load_dataset(path, split=f"train[:{train_split}%]"))
|
19 |
+
|
20 |
+
@st.cache_data
|
21 |
+
def get_top_reviews_per_business(path: str = top_reviews_path, train_split: int = 100) -> pd.DataFrame:
|
22 |
+
return pd.DataFrame(load_dataset(path, split=f"train[:{train_split}%]"))
|
23 |
+
|
24 |
+
@st.cache_data
|
25 |
+
def get_users_data(path: str = users_data_path, train_split: int = 100) -> pd.DataFrame:
|
26 |
+
return pd.DataFrame(load_dataset(path, split=f"train[:{train_split}%]"))
|
27 |
+
|
28 |
+
@st.cache_data
|
29 |
+
def get_business_names(business_dataset: pd.DataFrame) -> list:
|
30 |
+
return business_dataset.name.unique()
|
31 |
+
|
32 |
+
@st.cache_data
|
33 |
+
def get_business_locations(business_dataset: pd.DataFrame, business_name: str) -> list:
|
34 |
+
return business_dataset[business_dataset.name == business_name].address.unique()
|
35 |
+
|
36 |
+
@st.cache_data
|
37 |
+
def get_selected_business_reviews(reviews_dataset: pd.DataFrame, business_id: str) -> pd.DataFrame:
|
38 |
+
return reviews_dataset[reviews_dataset.business_id == business_id].reset_index(drop=True)
|
39 |
+
|
40 |
+
@st.cache_data
|
41 |
+
def get_business_info(business_dataset: pd.DataFrame, business_name:str, business_address:str) -> dict:
|
42 |
+
selected_business_dict = {}
|
43 |
+
|
44 |
+
selected_business_id = business_dataset[(business_dataset.name == business_name) & (business_dataset.address == business_address)].reset_index().business_id[0]
|
45 |
+
selected_business_dict['id'] = selected_business_id
|
46 |
+
|
47 |
+
selected_business_dict['name'] = business_dataset[business_dataset.business_id == selected_business_id].name.item()
|
48 |
+
selected_business_dict['city'] = business_dataset[business_dataset.business_id == selected_business_id].city.item()
|
49 |
+
selected_business_dict['state'] = business_dataset[business_dataset.business_id == selected_business_id].state.item()
|
50 |
+
selected_business_dict['postal_code'] = business_dataset[business_dataset.business_id == selected_business_id].postal_code.item()
|
51 |
+
selected_business_dict['address'] = business_dataset[business_dataset.business_id == selected_business_id].address.item()
|
52 |
+
selected_business_dict['categories'] = business_dataset[business_dataset.business_id == selected_business_id].categories.item()
|
53 |
+
selected_business_dict['stars'] = business_dataset[business_dataset.business_id == selected_business_id].stars.item()
|
54 |
+
|
55 |
+
selected_business_dict['price_range'] = '$' * int(business_dataset[business_dataset.business_id == selected_business_id].price_range.item())
|
56 |
+
selected_business_dict['wifi'] = business_dataset[business_dataset.business_id == selected_business_id].wifi.item()
|
57 |
+
selected_business_dict['appointment'] = business_dataset[business_dataset.business_id == selected_business_id].appointment.item()
|
58 |
+
selected_business_dict['delivery'] = business_dataset[business_dataset.business_id == selected_business_id].delivery.item()
|
59 |
+
|
60 |
+
selected_business_dict['review_count'] = business_dataset[business_dataset.business_id == selected_business_id].review_count.item()
|
61 |
+
|
62 |
+
selected_business_dict['num_sentiment_0'] = business_dataset[business_dataset.business_id == selected_business_id].num_sentiment_0.item()
|
63 |
+
selected_business_dict['num_sentiment_1'] = business_dataset[business_dataset.business_id == selected_business_id].num_sentiment_1.item()
|
64 |
+
|
65 |
+
selected_business_dict['num_star_1'] = business_dataset[business_dataset.business_id == selected_business_id].num_star_1.item()
|
66 |
+
selected_business_dict['num_star_2'] = business_dataset[business_dataset.business_id == selected_business_id].num_star_2.item()
|
67 |
+
selected_business_dict['num_star_3'] = business_dataset[business_dataset.business_id == selected_business_id].num_star_3.item()
|
68 |
+
selected_business_dict['num_star_4'] = business_dataset[business_dataset.business_id == selected_business_id].num_star_4.item()
|
69 |
+
selected_business_dict['num_star_5'] = business_dataset[business_dataset.business_id == selected_business_id].num_star_5.item()
|
70 |
+
|
71 |
+
return selected_business_dict
|
72 |
+
|
73 |
+
@st.cache_data
|
74 |
+
def get_user_info(user_dataset: pd.DataFrame, user_id: str) -> dict:
|
75 |
+
selected_user_dict = {}
|
76 |
+
|
77 |
+
selected_user_dict['id'] = user_id
|
78 |
+
|
79 |
+
selected_user_dict['name'] = user_dataset[user_dataset.user_id == user_id].name.item()
|
80 |
+
selected_user_dict['review_count'] = user_dataset[user_dataset.user_id == user_id].review_count.item()
|
81 |
+
selected_user_dict['average_stars'] = user_dataset[user_dataset.user_id == user_id].average_stars.item()
|
82 |
+
|
83 |
+
selected_user_dict['fans'] = user_dataset[user_dataset.user_id == user_id].fans.item()
|
84 |
+
selected_user_dict['friends_count'] = user_dataset[user_dataset.user_id == user_id].friends_count.item()
|
85 |
+
selected_user_dict['total_interactions'] = user_dataset[user_dataset.user_id == user_id].total_interactions.item()
|
86 |
+
selected_user_dict['total_compliments'] = user_dataset[user_dataset.user_id == user_id].total_compliments.item()
|
87 |
+
|
88 |
+
selected_user_dict['elite_years_count'] = user_dataset[user_dataset.user_id == user_id].elite_years_count.item()
|
89 |
+
selected_user_dict['yelping_since'] = str(pd.to_datetime(user_dataset[user_dataset.user_id == user_id].yelping_since.item()).date())
|
90 |
+
|
91 |
+
selected_user_dict['years_on_yelp'] = relativedelta(datetime.date.today(), user_dataset[user_dataset.user_id == user_id].yelping_since.item()).years
|
92 |
+
|
93 |
+
return selected_user_dict
|