Spaces:
Sleeping
Sleeping
import torch | |
def repeat_tensors(n, x): | |
""" | |
For a tensor of size Bx..., we repeat it n times, and make it Bnx... | |
For collections, do nested repeat | |
""" | |
if torch.is_tensor(x): | |
x = x.unsqueeze(1) # Bx1x... | |
x = x.expand(-1, n, *([-1]*len(x.shape[2:]))) # Bxnx... | |
x = x.reshape(x.shape[0]*n, *x.shape[2:]) # Bnx... | |
elif type(x) is list or type(x) is tuple: | |
x = [repeat_tensors(n, _) for _ in x] | |
return x | |
def split_tensors(n, x): | |
if torch.is_tensor(x): | |
assert x.shape[0] % n == 0 | |
x = x.reshape(x.shape[0] // n, n, *x.shape[1:]).unbind(1) | |
elif type(x) is list or type(x) is tuple: | |
x = [split_tensors(n, _) for _ in x] | |
elif x is None: | |
x = [None] * n | |
return x |