Spaces:
Sleeping
Sleeping
yash001010
commited on
Upload 3 files
Browse files- Embedded_Med_books/chroma.sqlite3 +0 -0
- app.py +144 -0
- requirements.txt +15 -0
Embedded_Med_books/chroma.sqlite3
ADDED
Binary file (168 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_community.vectorstores import Chroma
|
4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from groq import Groq
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# Initialize Streamlit page configuration
|
9 |
+
st.set_page_config(page_title="Medical Knowledge Assistant", layout="wide")
|
10 |
+
|
11 |
+
# Add API key input in sidebar
|
12 |
+
with st.sidebar:
|
13 |
+
st.header("API Key Configuration")
|
14 |
+
api_key = st.text_input("Enter your Groq API Key:", type="password")
|
15 |
+
if api_key:
|
16 |
+
os.environ['GROQ_API_KEY'] = api_key
|
17 |
+
else:
|
18 |
+
# Try loading from .env file
|
19 |
+
load_dotenv()
|
20 |
+
api_key = os.getenv("GROQ_API_KEY")
|
21 |
+
if api_key:
|
22 |
+
st.success("API Key loaded from .env file")
|
23 |
+
|
24 |
+
# Check for API key before proceeding
|
25 |
+
if not api_key:
|
26 |
+
st.warning("Please enter your Groq API key in the sidebar to continue.")
|
27 |
+
st.stop()
|
28 |
+
|
29 |
+
# Initialize the app
|
30 |
+
st.title("Medical Knowledge Assistant")
|
31 |
+
|
32 |
+
try:
|
33 |
+
# Set up the embeddings
|
34 |
+
model_name = "BAAI/bge-large-en"
|
35 |
+
model_kwargs = {'device': 'cpu'}
|
36 |
+
encode_kwargs = {'normalize_embeddings': False}
|
37 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
38 |
+
model_name=model_name,
|
39 |
+
model_kwargs=model_kwargs,
|
40 |
+
encode_kwargs=encode_kwargs
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load the vector store from the local drive
|
44 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
45 |
+
persist_directory = os.path.join(script_dir, 'Embedded_Med_books')
|
46 |
+
|
47 |
+
# Debug information
|
48 |
+
st.sidebar.header("Debug Information")
|
49 |
+
st.sidebar.write("Vector store path:", persist_directory)
|
50 |
+
|
51 |
+
with st.sidebar:
|
52 |
+
st.write("API Key Loaded:", "Yes" if api_key else "No")
|
53 |
+
|
54 |
+
# Check vector store directory
|
55 |
+
if not os.path.exists(persist_directory):
|
56 |
+
st.error(f"Vector store directory not found at: {persist_directory}")
|
57 |
+
if st.button("Create Directory"):
|
58 |
+
os.makedirs(persist_directory)
|
59 |
+
st.success("Directory created!")
|
60 |
+
|
61 |
+
# Load the vector store
|
62 |
+
vector_store = Chroma(
|
63 |
+
persist_directory=persist_directory,
|
64 |
+
embedding_function=embeddings
|
65 |
+
)
|
66 |
+
retriever = vector_store.as_retriever(search_kwargs={'k': 1})
|
67 |
+
|
68 |
+
# Initialize Groq client
|
69 |
+
client = Groq(api_key=api_key)
|
70 |
+
|
71 |
+
# Streamlit input
|
72 |
+
query = st.text_input("Enter your medical question here:")
|
73 |
+
|
74 |
+
def query_with_groq(query, retriever):
|
75 |
+
try:
|
76 |
+
# Retrieve relevant documents
|
77 |
+
docs = retriever.get_relevant_documents(query)
|
78 |
+
context = "\n".join([doc.page_content for doc in docs])
|
79 |
+
|
80 |
+
# Call the Groq API with the query and context
|
81 |
+
completion = client.chat.completions.create(
|
82 |
+
model="llama3-70b-8192",
|
83 |
+
messages=[
|
84 |
+
{
|
85 |
+
"role": "system",
|
86 |
+
"content": (
|
87 |
+
"You are a knowledgeable medical assistant. For any medical term or disease, include comprehensive information covering: "
|
88 |
+
"definitions, types, historical background, major theories, known causes, and contributing risk factors. "
|
89 |
+
"Explain the genesis or theories on its origin, if applicable. Use a structured, thorough approach and keep language accessible. "
|
90 |
+
"provide symptoms, diagnosis, and treatment and post operative care , address all with indepth explanation , with specific details and step-by-step processes where relevant. "
|
91 |
+
"If the context does not adequately cover the user's question, respond with: 'I cannot provide an answer based on the available medical dataset.'"
|
92 |
+
)
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"role": "system",
|
96 |
+
"content": (
|
97 |
+
"If the user asks for a medical explanation, ensure accuracy, don't include layman's terms if complex terms are used, "
|
98 |
+
"and organize responses in a structured way."
|
99 |
+
)
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"role": "system",
|
103 |
+
"content": (
|
104 |
+
"When comparing two terms or conditions, provide a clear, concise, and structured comparison. Highlight key differences in their "
|
105 |
+
"definitions, symptoms, causes, diagnoses, and treatments with indepth explanation of each. If relevant, include any overlapping characteristics."
|
106 |
+
)
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"role": "user",
|
110 |
+
"content": f"{context}\n\nQ: {query}\nA:"
|
111 |
+
}
|
112 |
+
],
|
113 |
+
temperature=0.7,
|
114 |
+
max_tokens=3000,
|
115 |
+
stream=True
|
116 |
+
)
|
117 |
+
|
118 |
+
# Create a placeholder for streaming response
|
119 |
+
response_container = st.empty()
|
120 |
+
response = ""
|
121 |
+
|
122 |
+
# Stream the response
|
123 |
+
for chunk in completion:
|
124 |
+
if chunk.choices[0].delta.content:
|
125 |
+
response += chunk.choices[0].delta.content
|
126 |
+
response_container.markdown(response)
|
127 |
+
|
128 |
+
return response
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
st.error(f"Error during query processing: {str(e)}")
|
132 |
+
return None
|
133 |
+
|
134 |
+
if st.button("Get Answer"):
|
135 |
+
if query:
|
136 |
+
with st.spinner("Processing your query..."):
|
137 |
+
answer = query_with_groq(query, retriever)
|
138 |
+
if answer:
|
139 |
+
st.success("Query processed successfully!")
|
140 |
+
else:
|
141 |
+
st.warning("Please enter a query.")
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
st.error(f"Initialization error: {str(e)}")
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.31.0
|
2 |
+
langchain-community==0.0.16
|
3 |
+
groq==0.4.5
|
4 |
+
python-dotenv==1.0.1
|
5 |
+
chromadb==0.4.22
|
6 |
+
sentence-transformers==2.5.1
|
7 |
+
transformers==4.37.2
|
8 |
+
torch==2.2.0
|
9 |
+
pydantic==2.6.1
|
10 |
+
typing-inspect==0.9.0
|
11 |
+
typing_extensions==4.9.0
|
12 |
+
numpy==1.26.3
|
13 |
+
pandas==2.2.0
|
14 |
+
tqdm==4.66.1
|
15 |
+
requests==2.31.0
|