Spaces:
Runtime error
Runtime error
File size: 4,475 Bytes
ebf3d10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import re
from pathlib import Path
import yaml
from modules import shared, ui
def get_model_settings_from_yamls(model):
settings = shared.model_config
model_settings = {}
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
return model_settings
def infer_loader(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
model_settings = get_model_settings_from_yamls(model_name)
if not path_to_model.exists():
loader = None
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
loader = 'AutoGPTQ'
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0:
loader = 'llama.cpp'
elif re.match('.*ggml.*\.bin', model_name.lower()):
loader = 'llama.cpp'
elif re.match('.*rwkv.*\.pth', model_name.lower()):
loader = 'RWKV'
elif shared.args.flexgen:
loader = 'FlexGen'
else:
loader = 'Transformers'
return loader
# UI: update the command-line arguments based on the interface values
def update_model_parameters(state, initial=False):
elements = ui.list_model_elements() # the names of the parameters
gpu_memories = []
for i, element in enumerate(elements):
if element not in state:
continue
value = state[element]
if element.startswith('gpu_memory'):
gpu_memories.append(value)
continue
if initial and vars(shared.args)[element] != vars(shared.args_defaults)[element]:
continue
# Setting null defaults
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
value = vars(shared.args_defaults)[element]
elif element in ['cpu_memory'] and value == 0:
value = vars(shared.args_defaults)[element]
# Making some simple conversions
if element in ['wbits', 'groupsize', 'pre_layer']:
value = int(value)
elif element == 'cpu_memory' and value is not None:
value = f"{value}MiB"
if element in ['pre_layer']:
value = [value] if value > 0 else None
setattr(shared.args, element, value)
found_positive = False
for i in gpu_memories:
if i > 0:
found_positive = True
break
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
if found_positive:
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
else:
shared.args.gpu_memory = None
# UI: update the state variable with the model settings
def apply_model_settings_to_state(model, state):
model_settings = get_model_settings_from_yamls(model)
if 'loader' not in model_settings:
loader = infer_loader(model)
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0:
loader = 'AutoGPTQ'
# If the user is using an alternative GPTQ loader, let them keep using it
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']):
state['loader'] = loader
for k in model_settings:
if k in state:
state[k] = model_settings[k]
return state
# Save the settings for this model to models/config-user.yaml
def save_model_settings(model, state):
if model == 'None':
yield ("Not saving the settings because no model is loaded.")
return
with Path(f'{shared.args.model_dir}/config-user.yaml') as p:
if p.exists():
user_config = yaml.safe_load(open(p, 'r').read())
else:
user_config = {}
model_regex = model + '$' # For exact matches
for _dict in [user_config, shared.model_config]:
if model_regex not in _dict:
_dict[model_regex] = {}
if model_regex not in user_config:
user_config[model_regex] = {}
for k in ui.list_model_elements():
user_config[model_regex][k] = state[k]
shared.model_config[model_regex][k] = state[k]
with open(p, 'w') as f:
f.write(yaml.dump(user_config, sort_keys=False))
yield (f"Settings for {model} saved to {p}")
|