a96123155 commited on
Commit
6bd3a1e
·
1 Parent(s): c4bd04f
Files changed (2) hide show
  1. .DS_Store +0 -0
  2. app.py +520 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py ADDED
@@ -0,0 +1,520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from io import StringIO
3
+ from Bio import SeqIO
4
+
5
+ import numpy as np
6
+ import os
7
+ import pandas as pd
8
+ import random
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from collections import Counter, OrderedDict
13
+ from copy import deepcopy
14
+ from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
15
+ from esm.data import *
16
+ from esm.model.esm2 import ESM2
17
+ from torch import nn
18
+ from torch.nn import Linear
19
+ from torch.nn.utils.rnn import pad_sequence
20
+ from torch.utils.data import Dataset, DataLoader
21
+ seed = 19961231
22
+ random.seed(seed)
23
+ np.random.seed(seed)
24
+ torch.manual_seed(seed)
25
+
26
+
27
+ st.title("IRES-LM prediction and mutation")
28
+
29
+ # Input sequence
30
+ st.subheader("Input sequence")
31
+
32
+ seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
33
+ st.subheader("Upload sequence file")
34
+ uploaded = st.file_uploader("Sequence file in FASTA format")
35
+
36
+ # augments
37
+ global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
38
+ output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
39
+ start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
40
+ end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
41
+ mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
42
+ transform_type = st.selectbox("Type of probability transformation",
43
+ ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
44
+ index=2)
45
+ mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
46
+ n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
47
+ n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
48
+ n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
49
+ n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
50
+ mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
51
+ if not mut_by_prob and transform_type != '':
52
+ st.write("--transform_type must be '' when --mut_by_prob is False")
53
+ transform_type = ''
54
+
55
+ global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
56
+
57
+ epochs = 5
58
+ layers = 6
59
+ heads = 16
60
+ embed_dim = 128
61
+ batch_toks = 4096
62
+ fc_node = 64
63
+ dropout_prob = 0.5
64
+ folds = 10
65
+ repr_layers = [-1]
66
+ include = ["mean"]
67
+ truncate = True
68
+ finetune = False
69
+ return_contacts = False
70
+ return_representation = False
71
+
72
+ global tok_to_idx, idx_to_tok, mask_toks_id
73
+ alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
74
+ assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
75
+
76
+ # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
77
+ tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
78
+ idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
79
+ # st.write(tok_to_idx)
80
+ mask_toks_id = 8
81
+
82
+ global w1, w2, w3
83
+ w1, w2, w3 = 1, 1, 100
84
+
85
+ class CNN_linear(nn.Module):
86
+ def __init__(self):
87
+ super(CNN_linear, self).__init__()
88
+
89
+ self.esm2 = ESM2(num_layers = layers,
90
+ embed_dim = embed_dim,
91
+ attention_heads = heads,
92
+ alphabet = alphabet)
93
+
94
+ self.dropout = nn.Dropout(dropout_prob)
95
+ self.relu = nn.ReLU()
96
+ self.flatten = nn.Flatten()
97
+ self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
98
+ self.output = nn.Linear(in_features = fc_node, out_features = 2)
99
+
100
+ def predict(self, tokens):
101
+
102
+ x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
103
+ x_cls = x["representations"][layers][:, 0]
104
+
105
+ o = self.fc(x_cls)
106
+ o = self.relu(o)
107
+ o = self.dropout(o)
108
+ o = self.output(o)
109
+
110
+ y_prob = torch.softmax(o, dim = 1)
111
+ y_pred = torch.argmax(y_prob, dim = 1)
112
+
113
+ if transform_type:
114
+ y_prob_transformed = prob_transform(y_prob[:,1])
115
+ return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
116
+ else:
117
+ return y_prob[:,1], y_pred, x['logits'], o[:,1]
118
+
119
+ def forward(self, x1, x2):
120
+ logit_1, repr_1 = self.predict(x1)
121
+ logit_2, repr_2 = self.predict(x2)
122
+ return (logit_1, logit_2), (repr_1, repr_2)
123
+
124
+
125
+ def prob_transform(prob, **kwargs): # Logits
126
+ """
127
+ Transforms probability values based on the specified method.
128
+
129
+ :param prob: torch.Tensor, the input probabilities to be transformed
130
+ :param transform_type: str, the type of transformation to be applied
131
+ :param kwargs: additional parameters for transformations
132
+ :return: torch.Tensor, transformed probabilities
133
+ """
134
+
135
+ if transform_type == 'sigmoid':
136
+ x0 = kwget('x0', 0.5)
137
+ k = kwget('k', 10.0)
138
+ prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
139
+
140
+ elif transform_type == 'logit':
141
+ # Adding a small value to avoid log(0) and log(1)
142
+ prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
143
+
144
+ elif transform_type == 'power_law':
145
+ gamma = kwget('gamma', 2.0)
146
+ prob_transformed = torch.pow(prob, gamma)
147
+
148
+ elif transform_type == 'tanh':
149
+ k = kwget('k', 2.0)
150
+ prob_transformed = torch.tanh(k * prob)
151
+
152
+ return prob_transformed
153
+
154
+ def random_replace(sequence, continuous_replace=False):
155
+ global start_nt_position, end_nt_position
156
+ if end_nt_position == -1: end_nt_position = len(sequence)-1
157
+ if start_nt_position < 0 or end_nt_position > len(sequence)-1 or start_nt_position > end_nt_position:
158
+ # raise ValueError("Invalid start/end positions")
159
+ st.write("Invalid start/end positions")
160
+ start_nt_position, end_nt_position = 0, len(sequence)-1
161
+
162
+ # 将序列切片成三部分:替换区域前、替换区域、替换区域后
163
+ pre_segment = sequence[:start_nt_position]
164
+ target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
165
+ post_segment = sequence[end_nt_position + 1:]
166
+
167
+ if not continuous_replace:
168
+ # 随机替换目标片段的mlm_tok_num个位置
169
+ indices = random.sample(range(len(target_segment)), mlm_tok_num)
170
+ for idx in indices:
171
+ target_segment[idx] = '*'
172
+ else:
173
+ # 在目标片段连续替换mlm_tok_num个位置
174
+ max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
175
+ if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
176
+ return target_segment
177
+ start_idx = random.randint(0, max_start_idx)
178
+ for idx in range(start_idx, start_idx + mlm_tok_num):
179
+ target_segment[idx] = '*'
180
+
181
+ # 合并并返回最终的序列
182
+ return ''.join([pre_segment] + target_segment + [post_segment])
183
+
184
+
185
+ def mlm_seq(seq):
186
+ seq_token, masked_sequence_token = [7],[7]
187
+ seq_token += [tok_to_idx[token] for token in seq]
188
+
189
+ masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
190
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
191
+
192
+ return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
193
+
194
+ def batch_mlm_seq(seq_list, continuous_replace = False):
195
+ batch_seq = []
196
+ batch_masked_seq = []
197
+ batch_seq_token_list = []
198
+ batch_masked_seq_token_list = []
199
+
200
+ for i, seq in enumerate(seq_list):
201
+ seq_token, masked_seq_token = [7], [7]
202
+ seq_token += [tok_to_idx[token] for token in seq]
203
+
204
+ masked_seq = random_replace(seq, continuous_replace) # 随机替换n_mut个元素为'*'
205
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
206
+
207
+ batch_seq.append(seq)
208
+ batch_masked_seq.append(masked_seq)
209
+
210
+ batch_seq_token_list.append(seq_token)
211
+ batch_masked_seq_token_list.append(masked_seq_token)
212
+
213
+ return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
214
+
215
+ def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
216
+ # Only remain the AGCT logits
217
+ esm_logits = esm_logits[:,:,3:7]
218
+ # Get the predicted tokens using argmax
219
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
220
+
221
+ batch_size, seq_len, vocab_size = esm_logits.size()
222
+ if exclude_low_prob: min_prob = 1 / vocab_size
223
+ # Initialize an empty list to store the recovered sequences
224
+ recovered_sequences, recovered_toks = [], []
225
+
226
+ for i in range(batch_size):
227
+ recovered_sequence_i, recovered_tok_i = [], []
228
+ for j in range(seq_len):
229
+ if masked_toks[i][j] == 8:
230
+ st.write(i,j)
231
+ ### Sample M recovery sequences using the logits
232
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
233
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
234
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
235
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
236
+
237
+ ### 有放回抽样
238
+ max_retries = 5
239
+ retries = 0
240
+ success = False
241
+
242
+ while retries < max_retries and not success:
243
+ try:
244
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
245
+ success = True # 设置成功标志
246
+ except ValueError as e:
247
+ retries += 1
248
+ st.write(f"Attempt {retries} failed with error: {e}")
249
+ if retries >= max_retries:
250
+ st.write("Max retries reached. Skipping this iteration.")
251
+
252
+ ### recovery to sequence
253
+ if retries < max_retries:
254
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
255
+ recovery_seq = deepcopy(list(masked_seqs[i]))
256
+ recovery_tok = deepcopy(masked_toks[i])
257
+
258
+ recovery_tok[j] = idx
259
+ recovery_seq[j-1] = idx_to_tok[idx]
260
+
261
+ recovered_tok_i.append(recovery_tok)
262
+ recovered_sequence_i.append(''.join(recovery_seq))
263
+
264
+ recovered_sequences.extend(recovered_sequence_i)
265
+ recovered_toks.extend(recovered_tok_i)
266
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
267
+
268
+ def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
269
+ # Only remain the AGCT logits
270
+ esm_logits = esm_logits[:,:,3:7]
271
+ # Get the predicted tokens using argmax
272
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
273
+
274
+ batch_size, seq_len, vocab_size = esm_logits.size()
275
+ if exclude_low_prob: min_prob = 1 / vocab_size
276
+ # Initialize an empty list to store the recovered sequences
277
+ recovered_sequences, recovered_toks = [], []
278
+
279
+ for i in range(batch_size):
280
+ recovered_sequence_i, recovered_tok_i = [], []
281
+ recovered_masked_num = 0
282
+ for j in range(seq_len):
283
+ if masked_toks[i][j] == 8:
284
+ ### Sample M recovery sequences using the logits
285
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
286
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
287
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
288
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
289
+
290
+ ### 有放回抽样
291
+ max_retries = 5
292
+ retries = 0
293
+ success = False
294
+
295
+ while retries < max_retries and not success:
296
+ try:
297
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
298
+ success = True # 设置成功标志
299
+ except ValueError as e:
300
+ retries += 1
301
+ st.write(f"Attempt {retries} failed with error: {e}")
302
+ if retries >= max_retries:
303
+ st.write("Max retries reached. Skipping this iteration.")
304
+
305
+ ### recovery to sequence
306
+
307
+ if recovered_masked_num == 0:
308
+ if retries < max_retries:
309
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
310
+ recovery_seq = deepcopy(list(masked_seqs[i]))
311
+ recovery_tok = deepcopy(masked_toks[i])
312
+
313
+ recovery_tok[j] = idx
314
+ recovery_seq[j-1] = idx_to_tok[idx]
315
+
316
+ recovered_tok_i.append(recovery_tok)
317
+ recovered_sequence_i.append(''.join(recovery_seq))
318
+
319
+ elif recovered_masked_num > 0:
320
+ if retries < max_retries:
321
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
322
+ for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
323
+
324
+ recovery_seq_temp = list(recovery_seq)
325
+ recovery_tok[j] = idx
326
+ recovery_seq_temp[j-1] = idx_to_tok[idx]
327
+
328
+ recovered_tok_i.append(recovery_tok)
329
+ recovered_sequence_i.append(''.join(recovery_seq_temp))
330
+
331
+ recovered_masked_num += 1
332
+ recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
333
+ recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
334
+ recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
335
+
336
+ recovered_sequences.extend(recovered_sequence_i)
337
+ recovered_toks.extend(recovered_tok_i)
338
+
339
+ recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
340
+
341
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
342
+
343
+ def mismatched_positions(s1, s2):
344
+ # 这个函数假定两个字符串的长度相同。
345
+ """Return the number of positions where two strings differ."""
346
+
347
+ # The number of mismatches will be the sum of positions where characters are not the same
348
+ return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
349
+
350
+ def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
351
+ seen = {}
352
+ unique_seqs = []
353
+ unique_probs = []
354
+ unique_logits = []
355
+
356
+ for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
357
+ if seq not in seen:
358
+ unique_seqs.append(seq)
359
+ unique_probs.append(prob)
360
+ unique_logits.append(logit)
361
+ seen[seq] = True
362
+
363
+ return unique_seqs, unique_probs, unique_logits
364
+
365
+ def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
366
+ seen = {}
367
+ unique_seqs = []
368
+ unique_probs = []
369
+
370
+ for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
371
+ if seq not in seen:
372
+ unique_seqs.append(seq)
373
+ unique_probs.append(prob)
374
+ seen[seq] = True
375
+
376
+ return unique_seqs, unique_probs
377
+
378
+ def mutated_seq(wt_seq, wt_label):
379
+ wt_seq = '!'+ wt_seq
380
+ wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
381
+ wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
382
+
383
+ st.write(f'Wild Type: Length = {len(wt_seq)} \n{wt_seq}')
384
+ st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
385
+
386
+ # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
387
+ # pbar = tqdm(total=n_mut)
388
+ mutated_seqs = []
389
+ i = 1
390
+ # pbar = st.progress(i, text="mutated number of sequence")
391
+ while i <= n_mut:
392
+ if i == 1: seeds_ep = [wt_seq[1:]]
393
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
394
+ for seed in seeds_ep:
395
+ seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
396
+
397
+ seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
398
+ _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
399
+ mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
400
+ mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
401
+
402
+ ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
403
+ filtered_mut_seqs = []
404
+ filtered_mut_probs = []
405
+ filtered_mut_logits = []
406
+ if mut_by_prob:
407
+ for z in range(len(mut_seqs)):
408
+ if mutate2stronger:
409
+ if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
410
+ filtered_mut_seqs.append(mut_seqs[z])
411
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
412
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
413
+ else:
414
+ if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
415
+ filtered_mut_seqs.append(mut_seqs[z])
416
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
417
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
418
+ else:
419
+ for z in range(len(mut_seqs)):
420
+ if mutate2stronger:
421
+ if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
422
+ filtered_mut_seqs.append(mut_seqs[z])
423
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
424
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
425
+ else:
426
+ if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
427
+ filtered_mut_seqs.append(mut_seqs[z])
428
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
429
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
430
+
431
+
432
+
433
+ ### Save
434
+ seeds_next_ep.extend(filtered_mut_seqs)
435
+ seeds_probs_next_ep.extend(filtered_mut_probs)
436
+ seeds_logits_next_ep.extend(filtered_mut_logits)
437
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
438
+
439
+ ### Sampling based on prob
440
+ if len(seeds_next_ep) > n_sampling_designs_ep:
441
+ seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
442
+ seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
443
+
444
+ seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
445
+ seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
446
+ seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
447
+ seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
448
+
449
+ mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
450
+
451
+ seeds_ep = seeds_next_ep
452
+ i += 1
453
+ # pbar.update(1)
454
+ # pbar.progress(i/n_mut, text="Mutating")
455
+ # pbar.close()
456
+ # st.success('Done', icon="✅")
457
+ mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
458
+ mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
459
+ mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
460
+ return mutated_seqs
461
+
462
+ def read_raw(raw_input):
463
+ ids = []
464
+ sequences = []
465
+
466
+ file = StringIO(raw_input)
467
+ for record in SeqIO.parse(file, "fasta"):
468
+
469
+ # 检查序列是否只包含A, G, C, T
470
+ sequence = str(record.seq.back_transcribe()).upper()
471
+ if not set(sequence).issubset(set("AGCT")):
472
+ st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
473
+ continue
474
+
475
+ # 将符合条件的序列添加到列表中
476
+ ids.append(record.id)
477
+ sequences.append(sequence)
478
+
479
+ return ids, sequences
480
+
481
+ def predict_raw(raw_input):
482
+ model.eval()
483
+ # st.write('====Parse Input====')
484
+ ids, seqs = read_raw(raw_input)
485
+
486
+ # st.write('====Predict====')
487
+ res_pd = pd.DataFrame(columns = ['wildtype_id', 'mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num'])
488
+ for wt_seq, wt_id in zip(seqs, ids):
489
+ try:
490
+ res = mutated_seq(wt_seq, wt_id)
491
+ res['wildtype_id'] = wt_id
492
+ res_pd = pd.concat([res_pd,res], axis = 0)
493
+ except:
494
+ st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
495
+
496
+ # st.write(res_pd)
497
+ return res_pd
498
+
499
+ global model, device
500
+ device = "cpu"
501
+ state_dict = torch.load('model.pt', map_location=torch.device(device))
502
+ new_state_dict = OrderedDict()
503
+
504
+ for k, v in state_dict.items():
505
+ name = k.replace('module.','')
506
+ new_state_dict[name] = v
507
+
508
+ model = CNN_linear().to(device)
509
+ model.load_state_dict(new_state_dict, strict = False)
510
+
511
+ # Run
512
+ if st.button("Predict and Mutate"):
513
+ if uploaded:
514
+ result = predict_raw(uploaded.getvalue().decode())
515
+ else:
516
+ result = predict_raw(seq)
517
+
518
+ result_file = result.to_csv(index=False)
519
+ st.download_button("Download", result_file, file_name=output_filename+".csv")
520
+ st.dataframe(result)