Our3D / lib /load_blender.py
yansong1616's picture
Upload 384 files
b177539 verified
raw
history blame
3.52 kB
import os
import torch
import numpy as np
import imageio
import json
import torch.nn.functional as F
import cv2
trans_t = lambda t : torch.Tensor([
[1,0,0,0],
[0,1,0,0],
[0,0,1,t],
[0,0,0,1]]).float()
rot_phi = lambda phi : torch.Tensor([
[1,0,0,0],
[0,np.cos(phi),-np.sin(phi),0],
[0,np.sin(phi), np.cos(phi),0],
[0,0,0,1]]).float()
rot_theta = lambda th : torch.Tensor([
[np.cos(th),0,-np.sin(th),0],
[0,1,0,0],
[np.sin(th),0, np.cos(th),0],
[0,0,0,1]]).float()
def pose_spherical(theta, phi, radius):
c2w = trans_t(radius)
c2w = rot_phi(phi/180.*np.pi) @ c2w
c2w = rot_theta(theta/180.*np.pi) @ c2w
c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w
return c2w
def load_blender_data(basedir, half_res=False, testskip=5, args=None):
splits = ['train', 'val', 'test']
metas = {}
for s in splits:
with open(os.path.join(basedir, 'transforms.json'.format(s)), 'r') as fp:
metas[s] = json.load(fp)
all_imgs = []
all_poses = []
if args is not None and args.distill_active:
all_fts = []
counts = [0]
# get H, W
tmp_img = imageio.imread(os.path.join(basedir, next(iter(metas.values()))['frames'][::1][0]['file_path'] + '.png'))
H, W = tmp_img.shape[:2]
if args is not None and args.distill_active:
fts_dict = load_features(file=os.path.join(basedir, "features.pt"), imhw=(H, W))
for s in splits:
meta = metas[s]
imgs = []
poses = []
fts = []
if s=='train' or testskip==0:
skip = 3
else:
skip = testskip
for frame in meta['frames'][::skip]:
fname = os.path.join(basedir, frame['file_path'] + '.png')
just_fname = fname.split('/')[-1]
if args is not None and args.distill_active:
fts.append(fts_dict[just_fname].permute(1, 2, 0))
imgs.append(imageio.imread(fname))
poses.append(np.array(frame['transform_matrix']))
imgs = (np.array(imgs) / 255.).astype(np.float32) # keep all 4 channels (RGBA)
if args is not None and args.distill_active:
fts = torch.stack(fts)
poses = np.array(poses).astype(np.float32)
counts.append(counts[-1] + imgs.shape[0])
all_imgs.append(imgs)
all_poses.append(poses)
if args is not None and args.distill_active:
all_fts.append(fts)
i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)]
imgs = np.concatenate(all_imgs, 0)
poses = np.concatenate(all_poses, 0)
if args is not None and args.distill_active:
fts = torch.cat(all_fts, 0)
H, W = imgs[0].shape[:2]
camera_angle_x = float(meta['camera_angle_x'])
focal = .5 * W / np.tan(.5 * camera_angle_x)
render_poses = torch.stack([pose_spherical(angle, -30.0, 4.0) for angle in np.linspace(-180,180,160+1)[:-1]], 0)
if half_res:
H = H//2
W = W//2
focal = focal/2.
imgs_half_res = np.zeros((imgs.shape[0], H, W, 4))
for i, img in enumerate(imgs):
imgs_half_res[i] = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
imgs = imgs_half_res
# imgs = tf.image.resize_area(imgs, [400, 400]).numpy()
if args is not None and args.distill_active:
return imgs, poses, render_poses, [H, W, focal], i_split, fts
else:
return imgs, poses, render_poses, [H, W, focal], i_split, None