Spaces:
Paused
Paused
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# gradio demo | |
# -------------------------------------------------------- | |
import argparse | |
import gradio | |
import os | |
import torch | |
import numpy as np | |
import tempfile | |
import functools | |
import trimesh | |
import copy | |
from scipy.spatial.transform import Rotation | |
from dust3r.inference import inference, load_model | |
from dust3r.image_pairs import make_pairs | |
from dust3r.utils.image import load_images, rgb | |
from dust3r.utils.device import to_numpy | |
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes | |
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode | |
import matplotlib.pyplot as plt | |
plt.ion() | |
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12 | |
batch_size = 1 | |
def show_mask(mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_points(coords, labels, ax, marker_size=375): | |
pos_points = coords[labels==1] | |
neg_points = coords[labels==0] | |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
from SAM import SamPredictor | |
from SAM.build_sam import sam_model_registry | |
sam_checkpoint = "checkpoints/sam_vit_b_01ec64.pth" | |
model_type = "vit_b" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to("cuda" if torch.cuda.is_available() else "cpu") | |
predictor = SamPredictor(sam) | |
def get_args_parser(): | |
parser = argparse.ArgumentParser() | |
parser_url = parser.add_mutually_exclusive_group() | |
parser_url.add_argument("--local_network", action='store_true', default=False, | |
help="make app accessible on local network: address will be set to 0.0.0.0") | |
parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1") | |
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size") | |
parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). " | |
"If None, will search for an available port starting at 7860."), | |
default=None) | |
parser.add_argument("--weights", type=str, default="./checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth", required=False, help="path to the model weights") | |
parser.add_argument("--device", type=str, default='cpu', help="pytorch device") | |
parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir") | |
return parser | |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, | |
cam_color=None, as_pointcloud=False, transparent_cams=False): | |
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) | |
pts3d = to_numpy(pts3d) | |
imgs = to_numpy(imgs) | |
focals = to_numpy(focals) | |
cams2world = to_numpy(cams2world) | |
scene = trimesh.Scene() | |
# full pointcloud | |
if as_pointcloud: | |
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)]) | |
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]) | |
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3)) | |
scene.add_geometry(pct) | |
else: | |
meshes = [] | |
for i in range(len(imgs)): | |
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i])) | |
mesh = trimesh.Trimesh(**cat_meshes(meshes)) | |
scene.add_geometry(mesh) | |
# add each camera | |
for i, pose_c2w in enumerate(cams2world): | |
if isinstance(cam_color, list): | |
camera_edge_color = cam_color[i] | |
else: | |
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] | |
add_scene_cam(scene, pose_c2w, camera_edge_color, | |
None if transparent_cams else imgs[i], focals[i], | |
imsize=imgs[i].shape[1::-1], screen_width=cam_size) | |
rot = np.eye(4) | |
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() | |
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) | |
outfile = os.path.join(outdir, 'scene.glb') | |
print('(exporting 3D scene to', outfile, ')') | |
scene.export(file_obj=outfile) | |
return outfile | |
def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False, | |
clean_depth=False, transparent_cams=False, cam_size=0.05): | |
""" | |
extract 3D_model (glb file) from a reconstructed scene | |
""" | |
if scene is None: | |
return None | |
# post processes | |
if clean_depth: | |
scene = scene.clean_pointcloud() | |
if mask_sky: | |
scene = scene.mask_sky() | |
# get optimized values from scene | |
rgbimg = scene.imgs | |
# print('SAM step...') | |
# predictor.set_image((rgbimg[0] * 255).astype(np.uint8)) | |
# h,w,c = rgbimg[0].shape | |
# input_point = np.array([ | |
# [int(w/2), int(h/2)], | |
# [int(w/2), int(h/2)-20] | |
# ]) | |
# input_label = np.array([1,1]) | |
# masks1, scores, logits = predictor.predict( | |
# point_coords=input_point, | |
# point_labels=input_label, | |
# multimask_output=False, | |
# ) | |
# fig, ax = plt.subplots(4, 2, figsize=(20, 20)) | |
# show_mask(masks1[0], ax[0][0], random_color=True) | |
# show_points(input_point, input_label, ax[0][0]) | |
# ax[0][1].imshow(rgbimg[0]) | |
# predictor.set_image((rgbimg[1] * 255).astype(np.uint8)) | |
# h,w,c = rgbimg[1].shape | |
# input_point = np.array([ | |
# [int(w/2), int(h/2)], | |
# [int(w/2), int(h/2)-20] | |
# ]) | |
# input_label = np.array([1,1]) | |
# masks2, scores, logits = predictor.predict( | |
# point_coords=input_point, | |
# point_labels=input_label, | |
# multimask_output=False, | |
# ) | |
focals = scene.get_focals().cpu() | |
cams2world = scene.get_im_poses().cpu() | |
# 3D pointcloud from depthmap, poses and intrinsics | |
pts3d = to_numpy(scene.get_pts3d()) | |
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr))) | |
msk = to_numpy(scene.get_masks()) | |
# ax[1][0].imshow(msk[0]) | |
# msk[0] = msk[0] & masks1[0] | |
# ax[1][1].imshow(msk[0]) | |
# ax[2][1].imshow(rgbimg[1]) | |
# show_mask(masks2[0], ax[2][0], random_color=True) | |
# show_points(input_point, input_label, ax[2][0]) | |
# ax[3][0].imshow(msk[1]) | |
# # msk[1] = msk[1] & masks2[0] | |
# ax[3][1].imshow(msk[1]) | |
# plt.savefig("rgb.png") | |
# import pdb | |
# pdb.set_trace() | |
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, | |
transparent_cams=transparent_cams, cam_size=cam_size) | |
def get_reconstructed_scene(outdir, model, device, image_size, filelist, schedule, niter, min_conf_thr, | |
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, | |
scenegraph_type, winsize, refid): | |
""" | |
from a list of images, run dust3r inference, global aligner. | |
then run get_3D_model_from_scene | |
""" | |
imgs = load_images(filelist, size=image_size) | |
if len(imgs) == 1: | |
imgs = [imgs[0], copy.deepcopy(imgs[0])] | |
imgs[1]['idx'] = 1 | |
if scenegraph_type == "swin": | |
scenegraph_type = scenegraph_type + "-" + str(winsize) | |
elif scenegraph_type == "oneref": | |
scenegraph_type = scenegraph_type + "-" + str(refid) | |
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True) | |
output = inference(pairs, model, device, batch_size=batch_size) | |
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer | |
scene = global_aligner(output, device=device, mode=mode) | |
lr = 0.01 | |
if mode == GlobalAlignerMode.PointCloudOptimizer: | |
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr) | |
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size) | |
# also return rgb, depth and confidence imgs | |
# depth is normalized with the max value for all images | |
# we apply the jet colormap on the confidence maps | |
rgbimg = scene.imgs | |
depths = to_numpy(scene.get_depthmaps()) | |
confs = to_numpy([c for c in scene.im_conf]) | |
cmap = plt.get_cmap('jet') | |
depths_max = max([d.max() for d in depths]) | |
depths = [d/depths_max for d in depths] | |
confs_max = max([d.max() for d in confs]) | |
confs = [cmap(d/confs_max) for d in confs] | |
imgs = [] | |
for i in range(len(rgbimg)): | |
imgs.append(rgbimg[i]) | |
imgs.append(rgb(depths[i])) | |
imgs.append(rgb(confs[i])) | |
return scene, outfile, imgs | |
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type): | |
num_files = len(inputfiles) if inputfiles is not None else 1 | |
max_winsize = max(1, (num_files - 1)//2) | |
if scenegraph_type == "swin": | |
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, | |
minimum=1, maximum=max_winsize, step=1, visible=True) | |
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, | |
maximum=num_files-1, step=1, visible=False) | |
elif scenegraph_type == "oneref": | |
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, | |
minimum=1, maximum=max_winsize, step=1, visible=False) | |
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, | |
maximum=num_files-1, step=1, visible=True) | |
else: | |
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, | |
minimum=1, maximum=max_winsize, step=1, visible=False) | |
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, | |
maximum=num_files-1, step=1, visible=False) | |
return winsize, refid | |
def main_demo(tmpdirname, model, device, image_size, server_name, server_port): | |
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, image_size) | |
model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname) | |
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo: | |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference | |
scene = gradio.State(None) | |
gradio.HTML('<h2 style="text-align: center;">DUSt3R Demo</h2>') | |
with gradio.Column(): | |
inputfiles = gradio.File(file_count="multiple") | |
with gradio.Row(): | |
schedule = gradio.Dropdown(["linear", "cosine"], | |
value='linear', label="schedule", info="For global alignment!") | |
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000, | |
label="num_iterations", info="For global alignment!") | |
scenegraph_type = gradio.Dropdown(["complete", "swin", "oneref"], | |
value='complete', label="Scenegraph", | |
info="Define how to make pairs", | |
interactive=True) | |
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, | |
minimum=1, maximum=1, step=1, visible=False) | |
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False) | |
run_btn = gradio.Button("Run") | |
with gradio.Row(): | |
# adjust the confidence threshold | |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1) | |
# adjust the camera size in the output pointcloud | |
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001) | |
with gradio.Row(): | |
as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud") | |
# two post process implemented | |
mask_sky = gradio.Checkbox(value=False, label="Mask sky") | |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") | |
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") | |
outmodel = gradio.Model3D() | |
outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%") | |
# events | |
scenegraph_type.change(set_scenegraph_options, | |
inputs=[inputfiles, winsize, refid, scenegraph_type], | |
outputs=[winsize, refid]) | |
inputfiles.change(set_scenegraph_options, | |
inputs=[inputfiles, winsize, refid, scenegraph_type], | |
outputs=[winsize, refid]) | |
run_btn.click(fn=recon_fun, | |
inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud, | |
mask_sky, clean_depth, transparent_cams, cam_size, | |
scenegraph_type, winsize, refid], | |
outputs=[scene, outmodel, outgallery]) | |
min_conf_thr.release(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size], | |
outputs=outmodel) | |
cam_size.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size], | |
outputs=outmodel) | |
as_pointcloud.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size], | |
outputs=outmodel) | |
mask_sky.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size], | |
outputs=outmodel) | |
clean_depth.change(fn=model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size], | |
outputs=outmodel) | |
transparent_cams.change(model_from_scene_fun, | |
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size], | |
outputs=outmodel) | |
demo.launch(share=False, server_name=server_name, server_port=server_port) | |
if __name__ == '__main__': | |
parser = get_args_parser() | |
args = parser.parse_args() | |
if args.tmp_dir is not None: | |
tmp_path = args.tmp_dir | |
os.makedirs(tmp_path, exist_ok=True) | |
tempfile.tempdir = tmp_path | |
if args.server_name is not None: | |
server_name = args.server_name | |
else: | |
server_name = '0.0.0.0' if args.local_network else '127.0.0.1' | |
model = load_model(args.weights, args.device) | |
# dust3r will write the 3D model inside tmpdirname | |
with tempfile.TemporaryDirectory(suffix='dust3r_gradio_demo') as tmpdirname: | |
print('Outputing stuff in', tmpdirname) | |
main_demo(tmpdirname, model, args.device, args.image_size, server_name, args.server_port) | |