Spaces:
Sleeping
Sleeping
## CroCo-Stereo and CroCo-Flow | |
This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained. | |
All commands should be launched from the root directory. | |
### Simple inference example | |
We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`. | |
Before running it, please download the trained models with: | |
``` | |
bash stereoflow/download_model.sh crocostereo.pth | |
bash stereoflow/download_model.sh crocoflow.pth | |
``` | |
### Prepare data for training or evaluation | |
Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`). | |
Please find below on the file structure should look for each dataset: | |
<details> | |
<summary>FlyingChairs</summary> | |
``` | |
./data/stereoflow/FlyingChairs/ | |
└───chairs_split.txt | |
└───data/ | |
└─── ... | |
``` | |
</details> | |
<details> | |
<summary>MPI-Sintel</summary> | |
``` | |
./data/stereoflow/MPI-Sintel/ | |
└───training/ | |
│ └───clean/ | |
│ └───final/ | |
│ └───flow/ | |
└───test/ | |
└───clean/ | |
└───final/ | |
``` | |
</details> | |
<details> | |
<summary>SceneFlow (including FlyingThings)</summary> | |
``` | |
./data/stereoflow/SceneFlow/ | |
└───Driving/ | |
│ └───disparity/ | |
│ └───frames_cleanpass/ | |
│ └───frames_finalpass/ | |
└───FlyingThings/ | |
│ └───disparity/ | |
│ └───frames_cleanpass/ | |
│ └───frames_finalpass/ | |
│ └───optical_flow/ | |
└───Monkaa/ | |
└───disparity/ | |
└───frames_cleanpass/ | |
└───frames_finalpass/ | |
``` | |
</details> | |
<details> | |
<summary>TartanAir</summary> | |
``` | |
./data/stereoflow/TartanAir/ | |
└───abandonedfactory/ | |
│ └───.../ | |
└───abandonedfactory_night/ | |
│ └───.../ | |
└───.../ | |
``` | |
</details> | |
<details> | |
<summary>Booster</summary> | |
``` | |
./data/stereoflow/booster_gt/ | |
└───train/ | |
└───balanced/ | |
└───Bathroom/ | |
└───Bedroom/ | |
└───... | |
``` | |
</details> | |
<details> | |
<summary>CREStereo</summary> | |
``` | |
./data/stereoflow/crenet_stereo_trainset/ | |
└───stereo_trainset/ | |
└───crestereo/ | |
└───hole/ | |
└───reflective/ | |
└───shapenet/ | |
└───tree/ | |
``` | |
</details> | |
<details> | |
<summary>ETH3D Two-view Low-res</summary> | |
``` | |
./data/stereoflow/eth3d_lowres/ | |
└───test/ | |
│ └───lakeside_1l/ | |
│ └───... | |
└───train/ | |
│ └───delivery_area_1l/ | |
│ └───... | |
└───train_gt/ | |
└───delivery_area_1l/ | |
└───... | |
``` | |
</details> | |
<details> | |
<summary>KITTI 2012</summary> | |
``` | |
./data/stereoflow/kitti-stereo-2012/ | |
└───testing/ | |
│ └───colored_0/ | |
│ └───colored_1/ | |
└───training/ | |
└───colored_0/ | |
└───colored_1/ | |
└───disp_occ/ | |
└───flow_occ/ | |
``` | |
</details> | |
<details> | |
<summary>KITTI 2015</summary> | |
``` | |
./data/stereoflow/kitti-stereo-2015/ | |
└───testing/ | |
│ └───image_2/ | |
│ └───image_3/ | |
└───training/ | |
└───image_2/ | |
└───image_3/ | |
└───disp_occ_0/ | |
└───flow_occ/ | |
``` | |
</details> | |
<details> | |
<summary>Middlebury</summary> | |
``` | |
./data/stereoflow/middlebury | |
└───2005/ | |
│ └───train/ | |
│ └───Art/ | |
│ └───... | |
└───2006/ | |
│ └───Aloe/ | |
│ └───Baby1/ | |
│ └───... | |
└───2014/ | |
│ └───Adirondack-imperfect/ | |
│ └───Adirondack-perfect/ | |
│ └───... | |
└───2021/ | |
│ └───data/ | |
│ └───artroom1/ | |
│ └───artroom2/ | |
│ └───... | |
└───MiddEval3_F/ | |
└───test/ | |
│ └───Australia/ | |
│ └───... | |
└───train/ | |
└───Adirondack/ | |
└───... | |
``` | |
</details> | |
<details> | |
<summary>Spring</summary> | |
``` | |
./data/stereoflow/spring/ | |
└───test/ | |
│ └───0003/ | |
│ └───... | |
└───train/ | |
└───0001/ | |
└───... | |
``` | |
</details> | |
### CroCo-Stereo | |
##### Main model | |
The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark. | |
``` | |
# Download the model | |
bash stereoflow/download_model.sh crocostereo.pth | |
# Middlebury v3 submission | |
python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9 | |
# Training command that was used, using checkpoint-last.pth | |
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ | |
# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus: | |
torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/ | |
``` | |
For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets. | |
``` | |
# Download the model | |
bash stereoflow/download_model.sh crocostereo_subtrain.pth | |
# Evaluation on validation sets | |
python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9 | |
# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus | |
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/ | |
``` | |
##### Other models | |
<details> | |
<summary>Model for ETH3D</summary> | |
The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss. | |
# Download the model | |
bash stereoflow/download_model.sh crocostereo_eth3d.pth | |
# ETH3D submission | |
python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9 | |
# Training command that was used | |
python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/ | |
</details> | |
<details> | |
<summary>Main model finetuned on Kitti</summary> | |
# Download the model | |
bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth | |
# Kitti submission | |
python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9 | |
# Training that was used | |
python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5 | |
</details> | |
<details> | |
<summary>Main model finetuned on Spring</summary> | |
# Download the model | |
bash stereoflow/download_model.sh crocostereo_finetune_spring.pth | |
# Spring submission | |
python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 | |
# Training command that was used | |
python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/ | |
</details> | |
<details> | |
<summary>Smaller models</summary> | |
To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth</code>. | |
</details> | |
### CroCo-Flow | |
##### Main model | |
The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets. | |
It was used for our submission to the MPI-Sintel benchmark. | |
``` | |
# Download the model | |
bash stereoflow/download_model.sh crocoflow.pth | |
# Evaluation | |
python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9 | |
# Sintel submission | |
python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9 | |
# Training command that was used, with checkpoint-best.pth | |
python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/ | |
``` | |
##### Other models | |
<details> | |
<summary>Main model finetuned on Kitti</summary> | |
# Download the model | |
bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth | |
# Kitti submission | |
python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99 | |
# Training that was used, with checkpoint-last.pth | |
python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/ | |
</details> | |
<details> | |
<summary>Main model finetuned on Spring</summary> | |
# Download the model | |
bash stereoflow/download_model.sh crocoflow_finetune_spring.pth | |
# Spring submission | |
python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9 | |
# Training command that was used, with checkpoint-last.pth | |
python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/ | |
</details> | |
<details> | |
<summary>Smaller models</summary> | |
To train CroCo-Flow with smaller CroCo pretrained models, simply replace the <code>--pretrained</code> argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth</code>, and for the model with a ViT-Base encoder and a Base decoder, use <code>bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth</code>. | |
</details> | |