Spaces:
Running
Running
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# utilitary functions for DUSt3R | |
# -------------------------------------------------------- | |
import torch | |
def fill_default_args(kwargs, func): | |
import inspect # a bit hacky but it works reliably | |
signature = inspect.signature(func) | |
for k, v in signature.parameters.items(): | |
if v.default is inspect.Parameter.empty: | |
continue | |
kwargs.setdefault(k, v.default) | |
return kwargs | |
def freeze_all_params(modules): | |
for module in modules: | |
try: | |
for n, param in module.named_parameters(): | |
param.requires_grad = False | |
except AttributeError: | |
# module is directly a parameter | |
module.requires_grad = False | |
def is_symmetrized(gt1, gt2): | |
x = gt1['instance'] | |
y = gt2['instance'] | |
if len(x) == len(y) and len(x) == 1: | |
return False # special case of batchsize 1 | |
ok = True | |
for i in range(0, len(x), 2): | |
ok = ok and (x[i] == y[i+1]) and (x[i+1] == y[i]) | |
return ok | |
def flip(tensor): | |
""" flip so that tensor[0::2] <=> tensor[1::2] """ | |
return torch.stack((tensor[1::2], tensor[0::2]), dim=1).flatten(0, 1) | |
def interleave(tensor1, tensor2): | |
res1 = torch.stack((tensor1, tensor2), dim=1).flatten(0, 1) | |
res2 = torch.stack((tensor2, tensor1), dim=1).flatten(0, 1) | |
return res1, res2 | |
def transpose_to_landscape(head, activate=True): | |
""" Predict in the correct aspect-ratio, | |
then transpose the result in landscape | |
and stack everything back together. | |
""" | |
def wrapper_no(decout, true_shape): | |
B = len(true_shape) | |
assert true_shape[0:1].allclose(true_shape), 'true_shape must be all identical' | |
H, W = true_shape[0].cpu().tolist() | |
res = head(decout, (H, W)) | |
return res | |
def wrapper_yes(decout, true_shape): | |
B = len(true_shape) | |
# by definition, the batch is in landscape mode so W >= H | |
H, W = int(true_shape.min()), int(true_shape.max()) | |
height, width = true_shape.T | |
is_landscape = (width >= height) | |
is_portrait = ~is_landscape | |
# true_shape = true_shape.cpu() | |
if is_landscape.all(): | |
return head(decout, (H, W)) | |
if is_portrait.all(): | |
return transposed(head(decout, (W, H))) | |
# batch is a mix of both portraint & landscape | |
def selout(ar): return [d[ar] for d in decout] | |
l_result = head(selout(is_landscape), (H, W)) | |
p_result = transposed(head(selout(is_portrait), (W, H))) | |
# allocate full result | |
result = {} | |
for k in l_result | p_result: | |
x = l_result[k].new(B, *l_result[k].shape[1:]) | |
x[is_landscape] = l_result[k] | |
x[is_portrait] = p_result[k] | |
result[k] = x | |
return result | |
return wrapper_yes if activate else wrapper_no | |
def transposed(dic): | |
return {k: v.swapaxes(1, 2) for k, v in dic.items()} | |
def invalid_to_nans(arr, valid_mask, ndim=999): | |
if valid_mask is not None: | |
arr = arr.clone() | |
arr[~valid_mask] = float('nan') | |
if arr.ndim > ndim: | |
arr = arr.flatten(-2 - (arr.ndim - ndim), -2) | |
return arr | |
def invalid_to_zeros(arr, valid_mask, ndim=999): | |
if valid_mask is not None: | |
arr = arr.clone() | |
arr[~valid_mask] = 0 | |
nnz = valid_mask.view(len(valid_mask), -1).sum(1) | |
else: | |
nnz = arr.numel() // len(arr) if len(arr) else 0 # number of point per image | |
if arr.ndim > ndim: | |
arr = arr.flatten(-2 - (arr.ndim - ndim), -2) | |
return arr, nnz | |