Spaces:
Running
Running
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Extracting crops for pre-training | |
# -------------------------------------------------------- | |
import os | |
import argparse | |
from tqdm import tqdm | |
from PIL import Image | |
import functools | |
from multiprocessing import Pool | |
import math | |
def arg_parser(): | |
parser = argparse.ArgumentParser('Generate cropped image pairs from image crop list') | |
parser.add_argument('--crops', type=str, required=True, help='crop file') | |
parser.add_argument('--root-dir', type=str, required=True, help='root directory') | |
parser.add_argument('--output-dir', type=str, required=True, help='output directory') | |
parser.add_argument('--imsize', type=int, default=256, help='size of the crops') | |
parser.add_argument('--nthread', type=int, required=True, help='number of simultaneous threads') | |
parser.add_argument('--max-subdir-levels', type=int, default=5, help='maximum number of subdirectories') | |
parser.add_argument('--ideal-number-pairs-in-dir', type=int, default=500, help='number of pairs stored in a dir') | |
return parser | |
def main(args): | |
listing_path = os.path.join(args.output_dir, 'listing.txt') | |
print(f'Loading list of crops ... ({args.nthread} threads)') | |
crops, num_crops_to_generate = load_crop_file(args.crops) | |
print(f'Preparing jobs ({len(crops)} candidate image pairs)...') | |
num_levels = min(math.ceil(math.log(num_crops_to_generate, args.ideal_number_pairs_in_dir)), args.max_subdir_levels) | |
num_pairs_in_dir = math.ceil(num_crops_to_generate ** (1/num_levels)) | |
jobs = prepare_jobs(crops, num_levels, num_pairs_in_dir) | |
del crops | |
os.makedirs(args.output_dir, exist_ok=True) | |
mmap = Pool(args.nthread).imap_unordered if args.nthread > 1 else map | |
call = functools.partial(save_image_crops, args) | |
print(f"Generating cropped images to {args.output_dir} ...") | |
with open(listing_path, 'w') as listing: | |
listing.write('# pair_path\n') | |
for results in tqdm(mmap(call, jobs), total=len(jobs)): | |
for path in results: | |
listing.write(f'{path}\n') | |
print('Finished writing listing to', listing_path) | |
def load_crop_file(path): | |
data = open(path).read().splitlines() | |
pairs = [] | |
num_crops_to_generate = 0 | |
for line in tqdm(data): | |
if line.startswith('#'): | |
continue | |
line = line.split(', ') | |
if len(line) < 8: | |
img1, img2, rotation = line | |
pairs.append((img1, img2, int(rotation), [])) | |
else: | |
l1, r1, t1, b1, l2, r2, t2, b2 = map(int, line) | |
rect1, rect2 = (l1, t1, r1, b1), (l2, t2, r2, b2) | |
pairs[-1][-1].append((rect1, rect2)) | |
num_crops_to_generate += 1 | |
return pairs, num_crops_to_generate | |
def prepare_jobs(pairs, num_levels, num_pairs_in_dir): | |
jobs = [] | |
powers = [num_pairs_in_dir**level for level in reversed(range(num_levels))] | |
def get_path(idx): | |
idx_array = [] | |
d = idx | |
for level in range(num_levels - 1): | |
idx_array.append(idx // powers[level]) | |
idx = idx % powers[level] | |
idx_array.append(d) | |
return '/'.join(map(lambda x: hex(x)[2:], idx_array)) | |
idx = 0 | |
for pair_data in tqdm(pairs): | |
img1, img2, rotation, crops = pair_data | |
if -60 <= rotation and rotation <= 60: | |
rotation = 0 # most likely not a true rotation | |
paths = [get_path(idx + k) for k in range(len(crops))] | |
idx += len(crops) | |
jobs.append(((img1, img2), rotation, crops, paths)) | |
return jobs | |
def load_image(path): | |
try: | |
return Image.open(path).convert('RGB') | |
except Exception as e: | |
print('skipping', path, e) | |
raise OSError() | |
def save_image_crops(args, data): | |
# load images | |
img_pair, rot, crops, paths = data | |
try: | |
img1, img2 = [load_image(os.path.join(args.root_dir, impath)) for impath in img_pair] | |
except OSError as e: | |
return [] | |
def area(sz): | |
return sz[0] * sz[1] | |
tgt_size = (args.imsize, args.imsize) | |
def prepare_crop(img, rect, rot=0): | |
# actual crop | |
img = img.crop(rect) | |
# resize to desired size | |
interp = Image.Resampling.LANCZOS if area(img.size) > 4*area(tgt_size) else Image.Resampling.BICUBIC | |
img = img.resize(tgt_size, resample=interp) | |
# rotate the image | |
rot90 = (round(rot/90) % 4) * 90 | |
if rot90 == 90: | |
img = img.transpose(Image.Transpose.ROTATE_90) | |
elif rot90 == 180: | |
img = img.transpose(Image.Transpose.ROTATE_180) | |
elif rot90 == 270: | |
img = img.transpose(Image.Transpose.ROTATE_270) | |
return img | |
results = [] | |
for (rect1, rect2), path in zip(crops, paths): | |
crop1 = prepare_crop(img1, rect1) | |
crop2 = prepare_crop(img2, rect2, rot) | |
fullpath1 = os.path.join(args.output_dir, path+'_1.jpg') | |
fullpath2 = os.path.join(args.output_dir, path+'_2.jpg') | |
os.makedirs(os.path.dirname(fullpath1), exist_ok=True) | |
assert not os.path.isfile(fullpath1), fullpath1 | |
assert not os.path.isfile(fullpath2), fullpath2 | |
crop1.save(fullpath1) | |
crop2.save(fullpath2) | |
results.append(path) | |
return results | |
if __name__ == '__main__': | |
args = arg_parser().parse_args() | |
main(args) | |