Spaces:
Running
Running
File size: 10,579 Bytes
56cd6b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Implementation of DUSt3R training losses
# --------------------------------------------------------
from copy import copy, deepcopy
import torch
import torch.nn as nn
from dust3r.inference import get_pred_pts3d, find_opt_scaling
from dust3r.utils.geometry import inv, geotrf, normalize_pointcloud
from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale
def Sum(*losses_and_masks):
loss, mask = losses_and_masks[0]
if loss.ndim > 0:
# we are actually returning the loss for every pixels
return losses_and_masks
else:
# we are returning the global loss
for loss2, mask2 in losses_and_masks[1:]:
loss = loss + loss2
return loss
class LLoss (nn.Module):
""" L-norm loss
"""
def __init__(self, reduction='mean'):
super().__init__()
self.reduction = reduction
def forward(self, a, b):
assert a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3, f'Bad shape = {a.shape}'
dist = self.distance(a, b)
assert dist.ndim == a.ndim-1 # one dimension less
if self.reduction == 'none':
return dist
if self.reduction == 'sum':
return dist.sum()
if self.reduction == 'mean':
return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
raise ValueError(f'bad {self.reduction=} mode')
def distance(self, a, b):
raise NotImplementedError()
class L21Loss (LLoss):
""" Euclidean distance between 3d points """
def distance(self, a, b):
return torch.norm(a - b, dim=-1) # normalized L2 distance
L21 = L21Loss()
class Criterion (nn.Module):
def __init__(self, criterion=None):
super().__init__()
assert isinstance(criterion, LLoss), f'{criterion} is not a proper criterion!'+bb()
self.criterion = copy(criterion)
def get_name(self):
return f'{type(self).__name__}({self.criterion})'
def with_reduction(self, mode):
res = loss = deepcopy(self)
while loss is not None:
assert isinstance(loss, Criterion)
loss.criterion.reduction = 'none' # make it return the loss for each sample
loss = loss._loss2 # we assume loss is a Multiloss
return res
class MultiLoss (nn.Module):
""" Easily combinable losses (also keep track of individual loss values):
loss = MyLoss1() + 0.1*MyLoss2()
Usage:
Inherit from this class and override get_name() and compute_loss()
"""
def __init__(self):
super().__init__()
self._alpha = 1
self._loss2 = None
def compute_loss(self, *args, **kwargs):
raise NotImplementedError()
def get_name(self):
raise NotImplementedError()
def __mul__(self, alpha):
assert isinstance(alpha, (int, float))
res = copy(self)
res._alpha = alpha
return res
__rmul__ = __mul__ # same
def __add__(self, loss2):
assert isinstance(loss2, MultiLoss)
res = cur = copy(self)
# find the end of the chain
while cur._loss2 is not None:
cur = cur._loss2
cur._loss2 = loss2
return res
def __repr__(self):
name = self.get_name()
if self._alpha != 1:
name = f'{self._alpha:g}*{name}'
if self._loss2:
name = f'{name} + {self._loss2}'
return name
def forward(self, *args, **kwargs):
loss = self.compute_loss(*args, **kwargs)
if isinstance(loss, tuple):
loss, details = loss
elif loss.ndim == 0:
details = {self.get_name(): float(loss)}
else:
details = {}
loss = loss * self._alpha
if self._loss2:
loss2, details2 = self._loss2(*args, **kwargs)
loss = loss + loss2
details |= details2
return loss, details
class Regr3D (Criterion, MultiLoss):
""" Ensure that all 3D points are correct.
Asymmetric loss: view1 is supposed to be the anchor.
P1 = RT1 @ D1
P2 = RT2 @ D2
loss1 = (I @ pred_D1) - (RT1^-1 @ RT1 @ D1)
loss2 = (RT21 @ pred_D2) - (RT1^-1 @ P2)
= (RT21 @ pred_D2) - (RT1^-1 @ RT2 @ D2)
"""
def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False):
super().__init__(criterion)
self.norm_mode = norm_mode
self.gt_scale = gt_scale
def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None):
# everything is normalized w.r.t. camera of view1
in_camera1 = inv(gt1['camera_pose'])
gt_pts1 = geotrf(in_camera1, gt1['pts3d']) # B,H,W,3
gt_pts2 = geotrf(in_camera1, gt2['pts3d']) # B,H,W,3
valid1 = gt1['valid_mask'].clone()
valid2 = gt2['valid_mask'].clone()
if dist_clip is not None:
# points that are too far-away == invalid
dis1 = gt_pts1.norm(dim=-1) # (B, H, W)
dis2 = gt_pts2.norm(dim=-1) # (B, H, W)
valid1 = valid1 & (dis1 <= dist_clip)
valid2 = valid2 & (dis2 <= dist_clip)
pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False)
pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True)
# normalize 3d points
if self.norm_mode:
pr_pts1, pr_pts2 = normalize_pointcloud(pr_pts1, pr_pts2, self.norm_mode, valid1, valid2)
if self.norm_mode and not self.gt_scale:
gt_pts1, gt_pts2 = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, valid1, valid2)
return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, {}
def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \
self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw)
# loss on img1 side
l1 = self.criterion(pred_pts1[mask1], gt_pts1[mask1])
# loss on gt2 side
l2 = self.criterion(pred_pts2[mask2], gt_pts2[mask2])
self_name = type(self).__name__
details = {self_name+'_pts3d_1': float(l1.mean()), self_name+'_pts3d_2': float(l2.mean())}
return Sum((l1, mask1), (l2, mask2)), (details | monitoring)
class ConfLoss (MultiLoss):
""" Weighted regression by learned confidence.
Assuming the input pixel_loss is a pixel-level regression loss.
Principle:
high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10)
low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10)
alpha: hyperparameter
"""
def __init__(self, pixel_loss, alpha=1):
super().__init__()
assert alpha > 0
self.alpha = alpha
self.pixel_loss = pixel_loss.with_reduction('none')
def get_name(self):
return f'ConfLoss({self.pixel_loss})'
def get_conf_log(self, x):
return x, torch.log(x)
def compute_loss(self, gt1, gt2, pred1, pred2, **kw):
# compute per-pixel loss
((loss1, msk1), (loss2, msk2)), details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw)
if loss1.numel() == 0:
print('NO VALID POINTS in img1', force=True)
if loss2.numel() == 0:
print('NO VALID POINTS in img2', force=True)
# weight by confidence
conf1, log_conf1 = self.get_conf_log(pred1['conf'][msk1])
conf2, log_conf2 = self.get_conf_log(pred2['conf'][msk2])
conf_loss1 = loss1 * conf1 - self.alpha * log_conf1
conf_loss2 = loss2 * conf2 - self.alpha * log_conf2
# average + nan protection (in case of no valid pixels at all)
conf_loss1 = conf_loss1.mean() if conf_loss1.numel() > 0 else 0
conf_loss2 = conf_loss2.mean() if conf_loss2.numel() > 0 else 0
return conf_loss1 + conf_loss2, dict(conf_loss_1=float(conf_loss1), conf_loss2=float(conf_loss2), **details)
class Regr3D_ShiftInv (Regr3D):
""" Same than Regr3D but invariant to depth shift.
"""
def get_all_pts3d(self, gt1, gt2, pred1, pred2):
# compute unnormalized points
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = \
super().get_all_pts3d(gt1, gt2, pred1, pred2)
# compute median depth
gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2]
pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2]
gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None]
pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None]
# subtract the median depth
gt_z1 -= gt_shift_z
gt_z2 -= gt_shift_z
pred_z1 -= pred_shift_z
pred_z2 -= pred_shift_z
# monitoring = dict(monitoring, gt_shift_z=gt_shift_z.mean().detach(), pred_shift_z=pred_shift_z.mean().detach())
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring
class Regr3D_ScaleInv (Regr3D):
""" Same than Regr3D but invariant to depth shift.
if gt_scale == True: enforce the prediction to take the same scale than GT
"""
def get_all_pts3d(self, gt1, gt2, pred1, pred2):
# compute depth-normalized points
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring = super().get_all_pts3d(gt1, gt2, pred1, pred2)
# measure scene scale
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2)
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2)
# prevent predictions to be in a ridiculous range
pred_scale = pred_scale.clip(min=1e-3, max=1e3)
# subtract the median depth
if self.gt_scale:
pred_pts1 *= gt_scale / pred_scale
pred_pts2 *= gt_scale / pred_scale
# monitoring = dict(monitoring, pred_scale=(pred_scale/gt_scale).mean())
else:
gt_pts1 /= gt_scale
gt_pts2 /= gt_scale
pred_pts1 /= pred_scale
pred_pts2 /= pred_scale
# monitoring = dict(monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach())
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, monitoring
class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv):
# calls Regr3D_ShiftInv first, then Regr3D_ScaleInv
pass
|