Spaces:
Running
Running
File size: 1,174 Bytes
633d2c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# copy from nerf unbounded
_base_ = '../default.py'
basedir = './logs/lerf'
data = dict(
dataset_type='lerf',
spherify=False,
factor=2,
white_bkgd=True,
rand_bkgd=True,
inverse_y=False, # llff format
unbounded_inward=True,
load2gpu_on_the_fly=True,
)
coarse_train = dict(N_iters=0)
fine_train = dict(
N_iters=800000,
N_rand=1024 * 4,
lrate_decay=80,
ray_sampler='flatten',
weight_nearclip=1.0,
weight_distortion=0.01,
pg_scale=[2000,4000,6000,8000,10000,12000,14000,16000],
tv_before=20000,
tv_dense_before=20000,
weight_tv_density=1e-6,
weight_tv_k0=1e-7
)
alpha_init = 1e-4
stepsize = 0.5
fine_model_and_render = dict(
num_voxels=320**3,
num_voxels_base=160**3,
alpha_init=alpha_init,
stepsize=stepsize,
fast_color_thres={
'_delete_': True,
0 : alpha_init*stepsize/10,
1500: min(alpha_init, 1e-4)*stepsize/5,
2500: min(alpha_init, 1e-4)*stepsize/2,
3500: min(alpha_init, 1e-4)*stepsize/1.5,
4500: min(alpha_init, 1e-4)*stepsize,
5500: min(alpha_init, 1e-4),
6500: 1e-4,
},
world_bound_scale=1,
)
|