Spaces:
Running
Running
File size: 34,016 Bytes
777e649 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
# -*- coding: utf-8 -*-
import argparse
import gradio
import os
import torch
import numpy as np
import tempfile
import functools
import trimesh
import copy
from scipy.spatial.transform import Rotation
from dust3r.inference import inference, load_model
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images, rgb, resize_images
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from sam2.build_sam import build_sam2_video_predictor
import matplotlib.pyplot as plt
import shutil
import json
from PIL import Image
import math
import cv2
plt.ion()
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
batch_size = 1
########################## 引入grounding_dino #############################
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
def get_mask_from_grounding_dino(video_dir, ann_frame_idx, ann_obj_id, input_text):
# init grounding dino model from huggingface
model_id = "IDEA-Research/grounding-dino-tiny"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
# setup the input image and text prompt for SAM 2 and Grounding DINO
# VERY important: text queries need to be lowercased + end with a dot
"""
Step 2: Prompt Grounding DINO and SAM image predictor to get the box and mask for specific frame
"""
# prompt grounding dino to get the box coordinates on specific frame
frame_names = [
p for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
# frame_names.sort(key=lambda p: os.path.splitext(p)[0])
img_path = os.path.join(video_dir, frame_names[ann_frame_idx])
image = Image.open(img_path)
# run Grounding DINO on the image
inputs = processor(images=image, text=input_text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = grounding_model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.25,
text_threshold=0.3,
target_sizes=[image.size[::-1]]
)
return results[0]["boxes"], results[0]["labels"]
def get_masks_from_grounded_sam2(h, w, predictor, video_dir, input_text):
inference_state = predictor.init_state(video_path=video_dir)
predictor.reset_state(inference_state)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
print("Running Groundding DINO......")
input_boxes, OBJECTS = get_mask_from_grounding_dino(video_dir, ann_frame_idx, ann_obj_id, input_text)
print("Groundding DINO run over!")
if(len(OBJECTS) < 1):
raise gradio.Error("The images you input do not contain the target in '{}'".format(input_text))
# 给第一个帧输入由grounding_dino输出的boxes作为prompts
for object_id, (label, box) in enumerate(zip(OBJECTS, input_boxes)):
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
box=box,
)
break #只加入第一个box
# sam2获取所有帧的分割结果
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
resize_mask = resize_mask_to_img(video_segments, w, h)
return resize_mask
def handle_uploaded_files(uploaded_files, target_folder):
# 创建目标文件夹
if not os.path.exists(target_folder):
os.makedirs(target_folder)
# 遍历上传的文件,移动到目标文件夹
for file in uploaded_files:
file_path = file.name # 文件的临时路径
file_name = os.path.basename(file_path) # 文件名
target_path = os.path.join(target_folder, file_name)
shutil.copy2(file_path, target_path)
print("copy images from {} to {}".format(file_path, target_path))
return target_folder
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_mask_sam2(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def get_args_parser():
parser = argparse.ArgumentParser()
parser_url = parser.add_mutually_exclusive_group()
parser_url.add_argument("--local_network", action='store_true', default=False,
help="make app accessible on local network: address will be set to 0.0.0.0")
parser_url.add_argument("--server_name", type=str, default="0.0.0.0", help="server url, default is 127.0.0.1")
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). "
"If None, will search for an available port starting at 7860."),
default=None)
parser.add_argument("--weights", type=str, required=True, help="path to the model weights")
parser.add_argument("--device", type=str, default='cpu', help="pytorch device")
parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir")
return parser
# 将渲染的3D保存到outfile路径
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False, transparent_cams=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
outfile = os.path.join(outdir, 'scene.glb')
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(outdir, scene, sam2_masks, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = scene.imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
assert len(msk) == len(sam2_masks)
# 将sam2输出的mask 和 dust3r输出的置信度阈值筛选后的msk取交集
for i in range(len(sam2_masks)):
msk[i] = np.logical_and(msk[i], sam2_masks[i])
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size) # 置信度和SAM2 mask的交集
# 将视频分割成固定帧数
def video_to_frames_fix(video_path, output_folder, frame_interval=10, target_fps=6):
"""
将视频转换为图像帧,并保存为 JPEG 文件。
frame_interval:保存帧的步长
target_fps: 目标帧率(每秒保存的帧数)
"""
# 确保输出文件夹存在
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 打开视频文件
cap = cv2.VideoCapture(video_path)
# 获取视频总帧数
frames_num = cap.get(cv2.CAP_PROP_FRAME_COUNT)
# 计算动态帧间隔
frame_interval = math.ceil(frames_num / target_fps)
print(f"总帧数: {frames_num} FPS, 动态帧间隔: 每隔 {frame_interval} 帧保存一次.")
frame_count = 0
saved_frame_count = 0
success, frame = cap.read()
file_list = []
# 逐帧读取视频
while success:
if frame_count % frame_interval == 0:
# 每隔 frame_interval 帧保存一次
frame_filename = os.path.join(output_folder, f"frame_{saved_frame_count:04d}.jpg")
cv2.imwrite(frame_filename, frame)
file_list.append(frame_filename)
saved_frame_count += 1
frame_count += 1
success, frame = cap.read()
# 释放视频捕获对象
cap.release()
print(f"视频处理完成,共保存了 {saved_frame_count} 帧到文件夹 '{output_folder}'.")
return file_list
def video_to_frames(video_path, output_folder, frame_interval=10, target_fps = 2):
"""
将视频转换为图像帧,并保存为 JPEG 文件。
frame_interval:保存帧的步长
target_fps: 目标帧率(每秒保存的帧数)
"""
# 确保输出文件夹存在
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 打开视频文件
cap = cv2.VideoCapture(video_path)
# 获取视频的实际帧率
actual_fps = cap.get(cv2.CAP_PROP_FPS)
# 获取视频总帧数
frames_num = cap.get(cv2.CAP_PROP_FRAME_COUNT)
# 计算动态帧间隔
# frame_interval = math.ceil(actual_fps / target_fps)
print(f"实际帧率: {actual_fps} FPS, 动态帧间隔: 每隔 {frame_interval} 帧保存一次.")
frame_count = 0
saved_frame_count = 0
success, frame = cap.read()
file_list = []
# 逐帧读取视频
while success:
if frame_count % frame_interval == 0:
# 每隔 frame_interval 帧保存一次
frame_filename = os.path.join(output_folder, f"frame_{saved_frame_count:04d}.jpg")
cv2.imwrite(frame_filename, frame)
file_list.append(frame_filename)
saved_frame_count += 1
frame_count += 1
success, frame = cap.read()
# 释放视频捕获对象
cap.release()
print(f"视频处理完成,共保存了 {saved_frame_count} 帧到文件夹 '{output_folder}'.")
return file_list
def overlay_mask_on_image(image, mask, color=[0, 1, 0], alpha=0.5):
"""
将mask融合在image上显示。
返回融合后的图片 (H, W, 3)
"""
# 创建一个与image相同尺寸的全黑图像
mask_colored = np.zeros_like(image)
# 将mask为True的位置赋值为指定颜色
mask_colored[mask] = color
# 将彩色掩码与原图像叠加
overlay = cv2.addWeighted(image, 1 - alpha, mask_colored, alpha, 0)
return overlay
def get_reconstructed_video(sam2, outdir, model, device, image_size, image_mask, video_dir, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, input_text):
target_dir = os.path.join(outdir, 'frames_video')
file_list = video_to_frames_fix(video_dir, target_dir)
scene, outfile, imgs = get_reconstructed_scene(sam2, outdir, model, device, image_size, image_mask, file_list, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, target_dir, input_text)
return scene, outfile, imgs
def get_reconstructed_image(sam2, outdir, model, device, image_size, image_mask, filelist, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, input_text):
target_folder = handle_uploaded_files(filelist, os.path.join(outdir, 'uploaded_images'))
scene, outfile, imgs = get_reconstructed_scene(sam2, outdir, model, device, image_size, image_mask, filelist, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, target_folder, input_text)
return scene, outfile, imgs
def get_reconstructed_scene(sam2, outdir, model, device, image_size, image_mask, filelist, schedule, niter, min_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, images_folder, input_text=None):
"""
from a list of images, run dust3rWithSam2 inference, global aligner.
then run get_3D_model_from_scene
"""
imgs = load_images(filelist, size=image_size)
img_size = imgs[0]["true_shape"]
for img in imgs[1:]:
if not np.equal(img["true_shape"], img_size).all():
raise gradio.Error("Please ensure that the images you enter are of the same size")
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, model, device, batch_size=batch_size)
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, device=device, mode=mode)
lr = 0.01
if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
# also return rgb, depth and confidence imgs
# depth is normalized with the max value for all images
# we apply the jet colormap on the confidence maps
rgbimg = scene.imgs
depths = to_numpy(scene.get_depthmaps())
confs = to_numpy([c for c in scene.im_conf])
cmap = plt.get_cmap('jet')
depths_max = max([d.max() for d in depths])
depths = [d / depths_max for d in depths]
confs_max = max([d.max() for d in confs])
confs = [cmap(d / confs_max) for d in confs]
# TODO 调用SAM2获取masks
h, w = rgbimg[0].shape[:-1]
masks = None
if not input_text or input_text.isspace(): # input_text 为空串
masks = get_masks_from_sam2(h, w, sam2, images_folder)
else:
masks = get_masks_from_grounded_sam2(h, w, sam2, images_folder, input_text) # gd-sam2
imgs = []
for i in range(len(rgbimg)):
imgs.append(rgbimg[i])
imgs.append(rgb(depths[i]))
imgs.append(rgb(confs[i]))
imgs.append(overlay_mask_on_image(rgbimg[i], masks[i])) # mask融合原图,展示SAM2的分割效果
# TODO 基于SAM2的mask过滤DUST3R的3D重建模型
outfile = get_3D_model_from_scene(outdir, scene, masks, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size)
return scene, outfile, imgs
def resize_mask_to_img(masks, target_width, target_height):
frame_mask = []
origin_size = masks[0][1].shape # 1表示object id
for frame, objects_mask in masks.items(): # 每个frame和该frame对应的分割结果
# 每个frame可能包含多个object对应的mask
masks = list(objects_mask.values())
if not masks: # masks为空,即当前frame不包含object
frame_mask.append(np.ones(origin_size, dtype=bool))
else: # 将当前frame包含的所有object的mask取并集
union_mask = masks[0]
for mask in masks[1:]:
union_mask = np.logical_or(union_mask, mask)
frame_mask.append(union_mask)
resized_mask = []
for mask in frame_mask:
mask_image = Image.fromarray(mask.squeeze(0).astype(np.uint8) * 255)
resized_mask_image = mask_image.resize((target_width, target_height), Image.NEAREST)
resized_mask.append(np.array(resized_mask_image) > 0)
return resized_mask
def get_masks_from_sam2(h, w, predictor, video_dir):
inference_state = predictor.init_state(video_path=video_dir)
predictor.reset_state(inference_state)
# 给一个帧添加points
points = np.array([[360, 550], [340, 400]], dtype=np.float32)
labels = np.array([1, 1], dtype=np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=0,
obj_id=1,
points=points,
labels=labels,
)
# sam2获取所有帧的分割结果
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
resize_mask = resize_mask_to_img(video_segments, w, h)
return resize_mask
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type):
num_files = len(inputfiles) if inputfiles is not None else 1
max_winsize = max(1, (num_files - 1) // 2)
if scenegraph_type == "swin":
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=True)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=False)
elif scenegraph_type == "oneref":
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=True)
else:
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files - 1, step=1, visible=False)
return winsize, refid
def process_images(imagesList):
return None
def process_videos(video):
return None
def upload_images_listener(image_size, file_list):
if len(file_list) == 1:
raise gradio.Error("Please enter images from at least two different views.")
print("Uploading image[0] to ImageMask:")
img_0 = load_images([file_list[0]], image_size)
i1 = img_0[0]['img'].squeeze(0)
rgb_img = rgb(i1)
return rgb_img
def upload_video_listener(image_size, video_dir):
cap = cv2.VideoCapture(video_dir)
success, frame = cap.read() # 第一帧
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
Image_frame = Image.fromarray(rgb_frame)
resized_frame = resize_images([Image_frame], image_size)
i1 = resized_frame[0]['img'].squeeze(0)
rgb_img = rgb(i1)
return rgb_img
def main_demo(sam2, tmpdirname, model, device, image_size, server_name, server_port):
# functools.partial解析:https://blog.csdn.net/wuShiJingZuo/article/details/135018810
recon_fun_image_demo = functools.partial(get_reconstructed_image,sam2, tmpdirname, model, device,
image_size)
recon_fun_video_demo = functools.partial(get_reconstructed_video, sam2, tmpdirname, model, device,
image_size)
upload_files_fun = functools.partial(upload_images_listener,image_size)
upload_video_fun = functools.partial(upload_video_listener, image_size)
with gradio.Blocks() as demo1:
scene = gradio.State(None)
gradio.HTML('<h1 style="text-align: center;">DUST3R With SAM2: Segmenting Everything In 3D</h1>')
gradio.HTML("""<h2 style="text-align: center;">
<a href='https://arxiv.org/abs/2304.03284' target='_blank' rel='noopener'>[paper]</a>
<a href='https://github.com/baaivision/Painter' target='_blank' rel='noopener'>[code]</a>
</h2>""")
gradio.HTML("""
<div style="text-align: center;">
<h2 style="text-align: center;">DUSt3R can unify various 3D vision tasks and set new SoTAs on monocular/multi-view depth estimation as well as relative pose estimation.</h2>
</div>
""")
gradio.set_static_paths(paths=["static/images/"])
project_path = "static/images/project.gif"
gradio.HTML(f"""
<div align='center' >
<img src="/file={project_path}" width='720px'>
</div>
""")
gradio.HTML("<p> \
<strong>DUST3R+SAM2: One touch for any segmentation in a video.</strong> <br>\
Choose an example below 🔥 🔥 🔥 <br>\
Or, upload by yourself: <br>\
1. Upload a video to be tested to 'video'. If failed, please check the codec, we recommend h.264 by default. <br>2. Upload a prompt image to 'prompt' and draw <strong>a point or line on the target</strong>. <br>\
<br> \
💎 SAM segments the target with any point or scribble, then SegGPT segments the whole video. <br>\
💎 Examples below were never trained and are randomly selected for testing in the wild. <br>\
💎 Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. <br> \
Note: we only take the first 16 frames for the demo. \
</p>")
with gradio.Column():
with gradio.Row():
inputfiles = gradio.File(file_count="multiple")
with gradio.Column():
image_mask = gradio.ImageMask(image_mode="RGB", type="numpy", brush=gradio.Brush(),
label="prompt (提示图)", transforms=(), width=600, height=450)
input_text = gradio.Textbox(info="please enter object here", label="Text Prompt")
with gradio.Row():
schedule = gradio.Dropdown(["linear", "cosine"],
value='linear', label="schedule", info="For global alignment!")
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000,
label="num_iterations", info="For global alignment!")
scenegraph_type = gradio.Dropdown(["complete", "swin", "oneref"],
value='complete', label="Scenegraph",
info="Define how to make pairs",
interactive=True)
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
minimum=1, maximum=1, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
run_btn = gradio.Button("Run")
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud")
# two post process implemented
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
outmodel = gradio.Model3D()
outgallery = gradio.Gallery(label='rgb,depth,confidence,mask', columns=4, height="100%")
inputfiles.upload(upload_files_fun, inputs=inputfiles, outputs=image_mask)
run_btn.click(fn=recon_fun_image_demo, # 调用get_reconstructed_image即DUST3R模型
inputs=[image_mask, inputfiles, schedule, niter, min_conf_thr, as_pointcloud,
mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, input_text],
outputs=[scene, outmodel, outgallery])
# ## **************************** video *******************************************************
with gradio.Blocks() as demo2:
gradio.HTML('<h1 style="text-align: center;">DUST3R With SAM2: Segmenting Everything In 3D</h1>')
gradio.HTML("""<h2 style="text-align: center;">
<a href='https://arxiv.org/abs/2304.03284' target='_blank' rel='noopener'>[paper]</a>
<a href='https://github.com/baaivision/Painter' target='_blank' rel='noopener'>[code]</a>
</h2>""")
gradio.HTML("""
<div style="text-align: center;">
<h2 style="text-align: center;">DUSt3R can unify various 3D vision tasks and set new SoTAs on monocular/multi-view depth estimation as well as relative pose estimation.</h2>
</div>
""")
gradio.set_static_paths(paths=["static/images/"])
project_path = "static/images/project.gif"
gradio.HTML(f"""
<div align='center' >
<img src="/file={project_path}" width='720px'>
</div>
""")
gradio.HTML("<p> \
<strong>DUST3R+SAM2: One touch for any segmentation in a video.</strong> <br>\
Choose an example below 🔥 🔥 🔥 <br>\
Or, upload by yourself: <br>\
1. Upload a video to be tested to 'video'. If failed, please check the codec, we recommend h.264 by default. <br>2. Upload a prompt image to 'prompt' and draw <strong>a point or line on the target</strong>. <br>\
<br> \
💎 SAM segments the target with any point or scribble, then SegGPT segments the whole video. <br>\
💎 Examples below were never trained and are randomly selected for testing in the wild. <br>\
💎 Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. <br> \
Note: we only take the first 16 frames for the demo. \
</p>")
with gradio.Column():
with gradio.Row():
input_video = gradio.Video(width=600, height=600)
with gradio.Column():
image_mask = gradio.ImageMask(image_mode="RGB", type="numpy", brush=gradio.Brush(),
label="prompt (提示图)", transforms=(), width=600, height=450)
input_text = gradio.Textbox(info="please enter object here", label="Text Prompt")
with gradio.Row():
schedule = gradio.Dropdown(["linear", "cosine"],
value='linear', label="schedule", info="For global alignment!")
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000,
label="num_iterations", info="For global alignment!")
scenegraph_type = gradio.Dropdown(["complete", "swin", "oneref"],
value='complete', label="Scenegraph",
info="Define how to make pairs",
interactive=True)
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
minimum=1, maximum=1, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
run_btn = gradio.Button("Run")
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud")
# two post process implemented
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
outmodel = gradio.Model3D()
outgallery = gradio.Gallery(label='rgb,depth,confidence,mask', columns=4, height="100%")
input_video.upload(upload_video_fun, inputs=input_video, outputs=image_mask)
run_btn.click(fn=recon_fun_video_demo, # 调用get_reconstructed_scene即DUST3R模型
inputs=[image_mask, input_video, schedule, niter, min_conf_thr, as_pointcloud,
mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid, input_text],
outputs=[scene, outmodel, outgallery])
app = gradio.TabbedInterface([demo1, demo2], ["3d rebuilding by images", "3d rebuilding by video"])
app.launch(share=False, server_name=server_name, server_port=server_port)
# TODO 修改bug:
#在项目的一次启动中,上传的多组图片在点击run后,会保存在同一个临时文件夹中,
# 这样后面再上传其他场景的图片时,不同场景下的图片会存在于一个文件夹中,
# 不同场景的图片导致分割与重建错误
## 目前构思的解决:在文件夹下再基于创建一个文件夹存放不同场景的图片,可以基于时间命名该文件夹
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
if args.tmp_dir is not None:
tmp_path = args.tmp_dir
os.makedirs(tmp_path, exist_ok=True)
tempfile.tempdir = tmp_path
if args.server_name is not None:
server_name = args.server_name
else:
server_name = '0.0.0.0' if args.local_network else '127.0.0.1'
# DUST3R
model = load_model(args.weights, args.device)
# SAM2
# 加载模型
sam2_checkpoint = "./SAM2/checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
sam2 = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
# dust3rWithSam2 will write the 3D model inside tmpdirname
with tempfile.TemporaryDirectory(suffix='dust3r_gradio_demo') as tmpdirname: # DUST3R生成的3D .glb 文件所在的文件夹名称
print('Outputing stuff in', tmpdirname)
main_demo(sam2, tmpdirname, model, args.device, args.image_size, server_name, args.server_port)
|