File size: 8,112 Bytes
56cd6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# DUSt3R model class
# --------------------------------------------------------
from copy import deepcopy
import torch

from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape
from .heads import head_factory
from dust3r.patch_embed import get_patch_embed

import dust3r.utils.path_to_croco  # noqa: F401
from croco.models.croco import CroCoNet  # noqa
inf = float('inf')


class AsymmetricCroCo3DStereo (CroCoNet):
    """ Two siamese encoders, followed by two decoders.
    The goal is to output 3d points directly, both images in view1's frame
    (hence the asymmetry).   
    """

    def __init__(self,
                 output_mode='pts3d',
                 head_type='linear',
                 depth_mode=('exp', -inf, inf),
                 conf_mode=('exp', 1, inf),
                 freeze='none',
                 landscape_only=True,
                 patch_embed_cls='PatchEmbedDust3R',  # PatchEmbedDust3R or ManyAR_PatchEmbed
                 **croco_kwargs):
        self.patch_embed_cls = patch_embed_cls
        self.croco_args = fill_default_args(croco_kwargs, super().__init__)
        super().__init__(**croco_kwargs)

        # dust3rWithSam2 specific initialization
        self.dec_blocks2 = deepcopy(self.dec_blocks)
        self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
        self.set_freeze(freeze)

    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
        self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)

    def load_state_dict(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        if not any(k.startswith('dec_blocks2') for k in ckpt):
            for key, value in ckpt.items():
                if key.startswith('dec_blocks'):
                    new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
        return super().load_state_dict(new_ckpt, **kw)

    def set_freeze(self, freeze):  # this is for use by downstream models
        self.freeze = freeze
        to_be_frozen = {
            'none':     [],
            'mask':     [self.mask_token],
            'encoder':  [self.mask_token, self.patch_embed, self.enc_blocks],
        }
        freeze_all_params(to_be_frozen[freeze])

    def _set_prediction_head(self, *args, **kwargs):
        """ No prediction head """
        return

    def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
                            **kw):
        assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
            f'{img_size=} must be multiple of {patch_size=}'
        self.output_mode = output_mode
        self.head_type = head_type
        self.depth_mode = depth_mode
        self.conf_mode = conf_mode
        # allocate heads
        self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        # magic wrapper
        self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
        self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)

    def _encode_image(self, image, true_shape): # image:输入的两张图片在batch维度上连接后的结果
        # embed the image into patches  (x has size B x Npatches x C)
        x, pos = self.patch_embed(image, true_shape=true_shape)  # 调用PatchEmbedDust3R,进行patch_embedding和位置编码

        # add positional embedding without cls token
        assert self.enc_pos_embed is None

        # now apply the transformer encoder and normalization
        for blk in self.enc_blocks: # 一共有24层block的encoder
            x = blk(x, pos)

        x = self.enc_norm(x) # LayerNorm
        return x, pos, None

    def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2):
        if img1.shape[-2:] == img2.shape[-2:]:
            out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0), # 将两张图片在batch维度上连接
                                             torch.cat((true_shape1, true_shape2), dim=0))
            out, out2 = out.chunk(2, dim=0)
            pos, pos2 = pos.chunk(2, dim=0)
        else: #******************************* 输入ViT encoder ************************
            out, pos, _ = self._encode_image(img1, true_shape1)
            out2, pos2, _ = self._encode_image(img2, true_shape2)
        return out, out2, pos, pos2

    def _encode_symmetrized(self, view1, view2):
        img1 = view1['img']
        img2 = view2['img']
        B = img1.shape[0]
        # Recover true_shape when available, otherwise assume that the img shape is the true one
        shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
        shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1))
        # warning! maybe the images have different portrait/landscape orientations

        if is_symmetrized(view1, view2):
            # computing half of forward pass!'
            feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2])
            feat1, feat2 = interleave(feat1, feat2)
            pos1, pos2 = interleave(pos1, pos2)
        else: #******************************* 输入ViT encoder ************************
            feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2)

        return (shape1, shape2), (feat1, feat2), (pos1, pos2)

    def _decoder(self, f1, pos1, f2, pos2):
        final_output = [(f1, f2)] # 来自encoder的两个编码 # 映射前的两个编码

        # project to decoder dim # 一个Linear映射层
        f1 = self.decoder_embed(f1) # Linear层,channel:1024->768
        f2 = self.decoder_embed(f2)

        final_output.append((f1, f2))                   # 映射后的两个编码
        for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2): #dec_blocks2是由dec_blocks deepcopy过来的,所以是一样的
            # img1 side,*final_output[-1][::+1]表示输入f1,f2
            f1, _ = blk1(*final_output[-1][::+1], pos1, pos2)
            # img2 side *final_output[-1][::-1]表示输入f2,f1
            f2, _ = blk2(*final_output[-1][::-1], pos2, pos1)
            # store the result
            final_output.append((f1, f2))

        # normalize last output
        del final_output[1]  # duplicate with final_output[0],即删除 映射后的两个编码
        final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
        return zip(*final_output)

    def _downstream_head(self, head_num, decout, img_shape):
        B, S, D = decout[-1].shape
        # img_shape = tuple(map(int, img_shape))
        head = getattr(self, f'head{head_num}')
        return head(decout, img_shape)

    def forward(self, view1, view2):
        # *****encode the two images --> B,S,D ** 输入ViT encoder ************************
        (shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2)

        # combine all ref images into object-centric representation **输入decoder*************
        dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2)

        with torch.cuda.amp.autocast(enabled=False): #Decoder的结果分别输入 Head1 和 Head2
            res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1) # PixelwiseTaskWithDPT
            res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2)

        res2['pts3d_in_other_view'] = res2.pop('pts3d')  # predict view2's pts3d in view1's frame,即res2中的三维点云坐标是在view1的相机坐标系下的
        return res1, res2