File size: 4,807 Bytes
633d2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9bca0f41",
   "metadata": {},
   "source": [
    "# Simple inference example with CroCo-Stereo or CroCo-Flow"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80653ef7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n",
    "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4f033862",
   "metadata": {},
   "source": [
    "First download the model(s) of your choice by running\n",
    "```\n",
    "bash stereoflow/download_model.sh crocostereo.pth\n",
    "bash stereoflow/download_model.sh crocoflow.pth\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1fb2e392",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n",
    "device = torch.device('cuda:0' if use_gpu else 'cpu')\n",
    "import matplotlib.pylab as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0e25d77",
   "metadata": {},
   "outputs": [],
   "source": [
    "from stereoflow.test import _load_model_and_criterion\n",
    "from stereoflow.engine import tiled_pred\n",
    "from stereoflow.datasets_stereo import img_to_tensor, vis_disparity\n",
    "from stereoflow.datasets_flow import flowToColor\n",
    "tile_overlap=0.7 # recommended value, higher value can be slightly better but slower"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "86a921f5",
   "metadata": {},
   "source": [
    "### CroCo-Stereo example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "64e483cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "image1 = np.asarray(Image.open('<path_to_left_image>'))\n",
    "image2 = np.asarray(Image.open('<path_to_right_image>'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f0d04303",
   "metadata": {},
   "outputs": [],
   "source": [
    "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocostereo.pth', None, device)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "47dc14b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n",
    "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n",
    "with torch.inference_mode():\n",
    "    pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n",
    "pred = pred.squeeze(0).squeeze(0).cpu().numpy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "583b9f16",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(vis_disparity(pred))\n",
    "plt.axis('off')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2df5d70",
   "metadata": {},
   "source": [
    "### CroCo-Flow example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9ee257a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "image1 = np.asarray(Image.open('<path_to_first_image>'))\n",
    "image2 = np.asarray(Image.open('<path_to_second_image>'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d5edccf0",
   "metadata": {},
   "outputs": [],
   "source": [
    "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocoflow.pth', None, device)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b19692c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n",
    "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n",
    "with torch.inference_mode():\n",
    "    pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n",
    "pred = pred.squeeze(0).permute(1,2,0).cpu().numpy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "26f79db3",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(flowToColor(pred))\n",
    "plt.axis('off')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}