Spaces:
Sleeping
Sleeping
File size: 38,215 Bytes
00fc29f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 |
# ------------------------------------------------------------------------
#
# Ultimate VAE Tile Optimization
#
# Introducing a revolutionary new optimization designed to make
# the VAE work with giant images on limited VRAM!
# Say goodbye to the frustration of OOM and hello to seamless output!
#
# ------------------------------------------------------------------------
#
# This script is a wild hack that splits the image into tiles,
# encodes each tile separately, and merges the result back together.
#
# Advantages:
# - The VAE can now work with giant images on limited VRAM
# (~10 GB for 8K images!)
# - The merged output is completely seamless without any post-processing.
#
# Drawbacks:
# - Giant RAM needed. To store the intermediate results for a 4096x4096
# images, you need 32 GB RAM it consumes ~20GB); for 8192x8192
# you need 128 GB RAM machine (it consumes ~100 GB)
# - NaNs always appear in for 8k images when you use fp16 (half) VAE
# You must use --no-half-vae to disable half VAE for that giant image.
# - Slow speed. With default tile size, it takes around 50/200 seconds
# to encode/decode a 4096x4096 image; and 200/900 seconds to encode/decode
# a 8192x8192 image. (The speed is limited by both the GPU and the CPU.)
# - The gradient calculation is not compatible with this hack. It
# will break any backward() or torch.autograd.grad() that passes VAE.
# (But you can still use the VAE to generate training data.)
#
# How it works:
# 1) The image is split into tiles.
# - To ensure perfect results, each tile is padded with 32 pixels
# on each side.
# - Then the conv2d/silu/upsample/downsample can produce identical
# results to the original image without splitting.
# 2) The original forward is decomposed into a task queue and a task worker.
# - The task queue is a list of functions that will be executed in order.
# - The task worker is a loop that executes the tasks in the queue.
# 3) The task queue is executed for each tile.
# - Current tile is sent to GPU.
# - local operations are directly executed.
# - Group norm calculation is temporarily suspended until the mean
# and var of all tiles are calculated.
# - The residual is pre-calculated and stored and addded back later.
# - When need to go to the next tile, the current tile is send to cpu.
# 4) After all tiles are processed, tiles are merged on cpu and return.
#
# Enjoy!
#
# @author: LI YI @ Nanyang Technological University - Singapore
# @date: 2023-03-02
# @license: MIT License
#
# Please give me a star if you like this project!
#
# -------------------------------------------------------------------------
import gc
from time import time
import math
from tqdm import tqdm
import torch
import torch.version
import torch.nn.functional as F
from einops import rearrange
from diffusers.utils.import_utils import is_xformers_available
import BOOXEL.utils.devices as devices
try:
import xformers
import xformers.ops
except ImportError:
pass
sd_flag = True
def get_recommend_encoder_tile_size():
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(
devices.device).total_memory // 2**20
if total_memory > 16*1000:
ENCODER_TILE_SIZE = 3072
elif total_memory > 12*1000:
ENCODER_TILE_SIZE = 2048
elif total_memory > 8*1000:
ENCODER_TILE_SIZE = 1536
else:
ENCODER_TILE_SIZE = 960
else:
ENCODER_TILE_SIZE = 512
return ENCODER_TILE_SIZE
def get_recommend_decoder_tile_size():
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(
devices.device).total_memory // 2**20
if total_memory > 30*1000:
DECODER_TILE_SIZE = 256
elif total_memory > 16*1000:
DECODER_TILE_SIZE = 192
elif total_memory > 12*1000:
DECODER_TILE_SIZE = 128
elif total_memory > 8*1000:
DECODER_TILE_SIZE = 96
else:
DECODER_TILE_SIZE = 64
else:
DECODER_TILE_SIZE = 64
return DECODER_TILE_SIZE
if 'global const':
DEFAULT_ENABLED = False
DEFAULT_MOVE_TO_GPU = False
DEFAULT_FAST_ENCODER = True
DEFAULT_FAST_DECODER = True
DEFAULT_COLOR_FIX = 0
DEFAULT_ENCODER_TILE_SIZE = get_recommend_encoder_tile_size()
DEFAULT_DECODER_TILE_SIZE = get_recommend_decoder_tile_size()
# inplace version of silu
def inplace_nonlinearity(x):
# Test: fix for Nans
return F.silu(x, inplace=True)
# extracted from ldm.modules.diffusionmodules.model
# from diffusers lib
def attn_forward_new(self, h_):
batch_size, channel, height, width = h_.shape
hidden_states = h_.view(batch_size, channel, height * width).transpose(1, 2)
attention_mask = None
encoder_hidden_states = None
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = self.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = self.head_to_batch_dim(query)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
attention_probs = self.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
return hidden_states
def attn_forward_new_pt2_0(self, hidden_states,):
scale = 1
attention_mask = None
encoder_hidden_states = None
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, self.heads, -1, attention_mask.shape[-1])
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states, scale=scale)
value = self.to_v(encoder_hidden_states, scale=scale)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, self.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = self.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
return hidden_states
def attn_forward_new_xformers(self, hidden_states):
scale = 1
attention_op = None
attention_mask = None
encoder_hidden_states = None
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, key_tokens, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = self.prepare_attention_mask(attention_mask, key_tokens, batch_size)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states, scale=scale)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states, scale=scale)
value = self.to_v(encoder_hidden_states, scale=scale)
query = self.head_to_batch_dim(query).contiguous()
key = self.head_to_batch_dim(key).contiguous()
value = self.head_to_batch_dim(value).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=attention_mask, op=attention_op#, scale=scale
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states, scale=scale)
# dropout
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
return hidden_states
def attn_forward(self, h_):
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h*w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h*w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h*w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
# b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return h_
def xformer_attn_forward(self, h_):
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(B, t.shape[1], 1, C)
.permute(0, 2, 1, 3)
.reshape(B * 1, t.shape[1], C)
.contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(
q, k, v, attn_bias=None, op=self.attention_op)
out = (
out.unsqueeze(0)
.reshape(B, 1, out.shape[1], C)
.permute(0, 2, 1, 3)
.reshape(B, out.shape[1], C)
)
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
out = self.proj_out(out)
return out
def attn2task(task_queue, net):
if False: #isinstance(net, AttnBlock):
task_queue.append(('store_res', lambda x: x))
task_queue.append(('pre_norm', net.norm))
task_queue.append(('attn', lambda x, net=net: attn_forward(net, x)))
task_queue.append(['add_res', None])
elif False: #isinstance(net, MemoryEfficientAttnBlock):
task_queue.append(('store_res', lambda x: x))
task_queue.append(('pre_norm', net.norm))
task_queue.append(
('attn', lambda x, net=net: xformer_attn_forward(net, x)))
task_queue.append(['add_res', None])
else:
task_queue.append(('store_res', lambda x: x))
task_queue.append(('pre_norm', net.norm))
if is_xformers_available:
# task_queue.append(('attn', lambda x, net=net: attn_forward_new_xformers(net, x)))
task_queue.append(
('attn', lambda x, net=net: xformer_attn_forward(net, x)))
elif hasattr(F, "scaled_dot_product_attention"):
task_queue.append(('attn', lambda x, net=net: attn_forward_new_pt2_0(net, x)))
else:
task_queue.append(('attn', lambda x, net=net: attn_forward_new(net, x)))
task_queue.append(['add_res', None])
def resblock2task(queue, block):
"""
Turn a ResNetBlock into a sequence of tasks and append to the task queue
@param queue: the target task queue
@param block: ResNetBlock
"""
if block.in_channels != block.out_channels:
if sd_flag:
if block.use_conv_shortcut:
queue.append(('store_res', block.conv_shortcut))
else:
queue.append(('store_res', block.nin_shortcut))
else:
if block.use_in_shortcut:
queue.append(('store_res', block.conv_shortcut))
else:
queue.append(('store_res', block.nin_shortcut))
else:
queue.append(('store_res', lambda x: x))
queue.append(('pre_norm', block.norm1))
queue.append(('silu', inplace_nonlinearity))
queue.append(('conv1', block.conv1))
queue.append(('pre_norm', block.norm2))
queue.append(('silu', inplace_nonlinearity))
queue.append(('conv2', block.conv2))
queue.append(['add_res', None])
def build_sampling(task_queue, net, is_decoder):
"""
Build the sampling part of a task queue
@param task_queue: the target task queue
@param net: the network
@param is_decoder: currently building decoder or encoder
"""
if is_decoder:
if sd_flag:
resblock2task(task_queue, net.mid.block_1)
attn2task(task_queue, net.mid.attn_1)
print(task_queue)
resblock2task(task_queue, net.mid.block_2)
resolution_iter = reversed(range(net.num_resolutions))
block_ids = net.num_res_blocks + 1
condition = 0
module = net.up
func_name = 'upsample'
else:
resblock2task(task_queue, net.mid_block.resnets[0])
attn2task(task_queue, net.mid_block.attentions[0])
resblock2task(task_queue, net.mid_block.resnets[1])
resolution_iter = (range(len(net.up_blocks))) # net.num_resolutions = 3
block_ids = 2 + 1
condition = len(net.up_blocks) - 1
module = net.up_blocks
func_name = 'upsamplers'
else:
if sd_flag:
resolution_iter = range(net.num_resolutions)
block_ids = net.num_res_blocks
condition = net.num_resolutions - 1
module = net.down
func_name = 'downsample'
else:
resolution_iter = range(len(net.down_blocks))
block_ids = 2
condition = len(net.down_blocks) - 1
module = net.down_blocks
func_name = 'downsamplers'
for i_level in resolution_iter:
for i_block in range(block_ids):
if sd_flag:
resblock2task(task_queue, module[i_level].block[i_block])
else:
resblock2task(task_queue, module[i_level].resnets[i_block])
if i_level != condition:
if sd_flag:
task_queue.append((func_name, getattr(module[i_level], func_name)))
else:
if is_decoder:
task_queue.append((func_name, module[i_level].upsamplers[0]))
else:
task_queue.append((func_name, module[i_level].downsamplers[0]))
if not is_decoder:
if sd_flag:
resblock2task(task_queue, net.mid.block_1)
attn2task(task_queue, net.mid.attn_1)
resblock2task(task_queue, net.mid.block_2)
else:
resblock2task(task_queue, net.mid_block.resnets[0])
attn2task(task_queue, net.mid_block.attentions[0])
resblock2task(task_queue, net.mid_block.resnets[1])
def build_task_queue(net, is_decoder):
"""
Build a single task queue for the encoder or decoder
@param net: the VAE decoder or encoder network
@param is_decoder: currently building decoder or encoder
@return: the task queue
"""
task_queue = []
task_queue.append(('conv_in', net.conv_in))
# construct the sampling part of the task queue
# because encoder and decoder share the same architecture, we extract the sampling part
build_sampling(task_queue, net, is_decoder)
if is_decoder and not sd_flag:
net.give_pre_end = False
net.tanh_out = False
if not is_decoder or not net.give_pre_end:
if sd_flag:
task_queue.append(('pre_norm', net.norm_out))
else:
task_queue.append(('pre_norm', net.conv_norm_out))
task_queue.append(('silu', inplace_nonlinearity))
task_queue.append(('conv_out', net.conv_out))
if is_decoder and net.tanh_out:
task_queue.append(('tanh', torch.tanh))
return task_queue
def clone_task_queue(task_queue):
"""
Clone a task queue
@param task_queue: the task queue to be cloned
@return: the cloned task queue
"""
return [[item for item in task] for task in task_queue]
def get_var_mean(input, num_groups, eps=1e-6):
"""
Get mean and var for group norm
"""
b, c = input.size(0), input.size(1)
channel_in_group = int(c/num_groups)
input_reshaped = input.contiguous().view(
1, int(b * num_groups), channel_in_group, *input.size()[2:])
var, mean = torch.var_mean(
input_reshaped, dim=[0, 2, 3, 4], unbiased=False)
return var, mean
def custom_group_norm(input, num_groups, mean, var, weight=None, bias=None, eps=1e-6):
"""
Custom group norm with fixed mean and var
@param input: input tensor
@param num_groups: number of groups. by default, num_groups = 32
@param mean: mean, must be pre-calculated by get_var_mean
@param var: var, must be pre-calculated by get_var_mean
@param weight: weight, should be fetched from the original group norm
@param bias: bias, should be fetched from the original group norm
@param eps: epsilon, by default, eps = 1e-6 to match the original group norm
@return: normalized tensor
"""
b, c = input.size(0), input.size(1)
channel_in_group = int(c/num_groups)
input_reshaped = input.contiguous().view(
1, int(b * num_groups), channel_in_group, *input.size()[2:])
out = F.batch_norm(input_reshaped, mean, var, weight=None, bias=None,
training=False, momentum=0, eps=eps)
out = out.view(b, c, *input.size()[2:])
# post affine transform
if weight is not None:
out *= weight.view(1, -1, 1, 1)
if bias is not None:
out += bias.view(1, -1, 1, 1)
return out
def crop_valid_region(x, input_bbox, target_bbox, is_decoder):
"""
Crop the valid region from the tile
@param x: input tile
@param input_bbox: original input bounding box
@param target_bbox: output bounding box
@param scale: scale factor
@return: cropped tile
"""
padded_bbox = [i * 8 if is_decoder else i//8 for i in input_bbox]
margin = [target_bbox[i] - padded_bbox[i] for i in range(4)]
return x[:, :, margin[2]:x.size(2)+margin[3], margin[0]:x.size(3)+margin[1]]
# βββ https://github.com/Kahsolt/stable-diffusion-webui-vae-tile-infer βββ
def perfcount(fn):
def wrapper(*args, **kwargs):
ts = time()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats(devices.device)
devices.torch_gc()
gc.collect()
ret = fn(*args, **kwargs)
devices.torch_gc()
gc.collect()
if torch.cuda.is_available():
vram = torch.cuda.max_memory_allocated(devices.device) / 2**20
torch.cuda.reset_peak_memory_stats(devices.device)
print(
f'[Tiled VAE]: Done in {time() - ts:.3f}s, max VRAM alloc {vram:.3f} MB')
else:
print(f'[Tiled VAE]: Done in {time() - ts:.3f}s')
return ret
return wrapper
# copy end :)
class GroupNormParam:
def __init__(self):
self.var_list = []
self.mean_list = []
self.pixel_list = []
self.weight = None
self.bias = None
def add_tile(self, tile, layer):
var, mean = get_var_mean(tile, 32)
# For giant images, the variance can be larger than max float16
# In this case we create a copy to float32
if var.dtype == torch.float16 and var.isinf().any():
fp32_tile = tile.float()
var, mean = get_var_mean(fp32_tile, 32)
# ============= DEBUG: test for infinite =============
# if torch.isinf(var).any():
# print('var: ', var)
# ====================================================
self.var_list.append(var)
self.mean_list.append(mean)
self.pixel_list.append(
tile.shape[2]*tile.shape[3])
if hasattr(layer, 'weight'):
self.weight = layer.weight
self.bias = layer.bias
else:
self.weight = None
self.bias = None
def summary(self):
"""
summarize the mean and var and return a function
that apply group norm on each tile
"""
if len(self.var_list) == 0:
return None
var = torch.vstack(self.var_list)
mean = torch.vstack(self.mean_list)
max_value = max(self.pixel_list)
pixels = torch.tensor(
self.pixel_list, dtype=torch.float32, device=devices.device) / max_value
sum_pixels = torch.sum(pixels)
pixels = pixels.unsqueeze(
1) / sum_pixels
var = torch.sum(
var * pixels, dim=0)
mean = torch.sum(
mean * pixels, dim=0)
return lambda x: custom_group_norm(x, 32, mean, var, self.weight, self.bias)
@staticmethod
def from_tile(tile, norm):
"""
create a function from a single tile without summary
"""
var, mean = get_var_mean(tile, 32)
if var.dtype == torch.float16 and var.isinf().any():
fp32_tile = tile.float()
var, mean = get_var_mean(fp32_tile, 32)
# if it is a macbook, we need to convert back to float16
if var.device.type == 'mps':
# clamp to avoid overflow
var = torch.clamp(var, 0, 60000)
var = var.half()
mean = mean.half()
if hasattr(norm, 'weight'):
weight = norm.weight
bias = norm.bias
else:
weight = None
bias = None
def group_norm_func(x, mean=mean, var=var, weight=weight, bias=bias):
return custom_group_norm(x, 32, mean, var, weight, bias, 1e-6)
return group_norm_func
class VAEHook:
def __init__(self, net, tile_size, is_decoder, fast_decoder, fast_encoder, color_fix, to_gpu=False):
self.net = net # encoder | decoder
self.tile_size = tile_size
self.is_decoder = is_decoder
self.fast_mode = (fast_encoder and not is_decoder) or (
fast_decoder and is_decoder)
self.color_fix = color_fix and not is_decoder
self.to_gpu = to_gpu
self.pad = 11 if is_decoder else 32
def __call__(self, x):
B, C, H, W = x.shape
original_device = next(self.net.parameters()).device
try:
if self.to_gpu:
self.net.to(devices.get_optimal_device())
if max(H, W) <= self.pad * 2 + self.tile_size:
print("[Tiled VAE]: the input size is tiny and unnecessary to tile.")
return self.net.original_forward(x)
else:
return self.vae_tile_forward(x)
finally:
self.net.to(original_device)
def get_best_tile_size(self, lowerbound, upperbound):
"""
Get the best tile size for GPU memory
"""
divider = 32
while divider >= 2:
remainer = lowerbound % divider
if remainer == 0:
return lowerbound
candidate = lowerbound - remainer + divider
if candidate <= upperbound:
return candidate
divider //= 2
return lowerbound
def split_tiles(self, h, w):
"""
Tool function to split the image into tiles
@param h: height of the image
@param w: width of the image
@return: tile_input_bboxes, tile_output_bboxes
"""
tile_input_bboxes, tile_output_bboxes = [], []
tile_size = self.tile_size
pad = self.pad
num_height_tiles = math.ceil((h - 2 * pad) / tile_size)
num_width_tiles = math.ceil((w - 2 * pad) / tile_size)
# If any of the numbers are 0, we let it be 1
# This is to deal with long and thin images
num_height_tiles = max(num_height_tiles, 1)
num_width_tiles = max(num_width_tiles, 1)
# Suggestions from https://github.com/Kahsolt: auto shrink the tile size
real_tile_height = math.ceil((h - 2 * pad) / num_height_tiles)
real_tile_width = math.ceil((w - 2 * pad) / num_width_tiles)
real_tile_height = self.get_best_tile_size(real_tile_height, tile_size)
real_tile_width = self.get_best_tile_size(real_tile_width, tile_size)
print(f'[Tiled VAE]: split to {num_height_tiles}x{num_width_tiles} = {num_height_tiles*num_width_tiles} tiles. ' +
f'Optimal tile size {real_tile_width}x{real_tile_height}, original tile size {tile_size}x{tile_size}')
for i in range(num_height_tiles):
for j in range(num_width_tiles):
# bbox: [x1, x2, y1, y2]
# the padding is is unnessary for image borders. So we directly start from (32, 32)
input_bbox = [
pad + j * real_tile_width,
min(pad + (j + 1) * real_tile_width, w),
pad + i * real_tile_height,
min(pad + (i + 1) * real_tile_height, h),
]
# if the output bbox is close to the image boundary, we extend it to the image boundary
output_bbox = [
input_bbox[0] if input_bbox[0] > pad else 0,
input_bbox[1] if input_bbox[1] < w - pad else w,
input_bbox[2] if input_bbox[2] > pad else 0,
input_bbox[3] if input_bbox[3] < h - pad else h,
]
# scale to get the final output bbox
output_bbox = [x * 8 if self.is_decoder else x // 8 for x in output_bbox]
tile_output_bboxes.append(output_bbox)
# indistinguishable expand the input bbox by pad pixels
tile_input_bboxes.append([
max(0, input_bbox[0] - pad),
min(w, input_bbox[1] + pad),
max(0, input_bbox[2] - pad),
min(h, input_bbox[3] + pad),
])
return tile_input_bboxes, tile_output_bboxes
@torch.no_grad()
def estimate_group_norm(self, z, task_queue, color_fix):
device = z.device
tile = z
last_id = len(task_queue) - 1
while last_id >= 0 and task_queue[last_id][0] != 'pre_norm':
last_id -= 1
if last_id <= 0 or task_queue[last_id][0] != 'pre_norm':
raise ValueError('No group norm found in the task queue')
# estimate until the last group norm
for i in range(last_id + 1):
task = task_queue[i]
if task[0] == 'pre_norm':
group_norm_func = GroupNormParam.from_tile(tile, task[1])
task_queue[i] = ('apply_norm', group_norm_func)
if i == last_id:
return True
tile = group_norm_func(tile)
elif task[0] == 'store_res':
task_id = i + 1
while task_id < last_id and task_queue[task_id][0] != 'add_res':
task_id += 1
if task_id >= last_id:
continue
task_queue[task_id][1] = task[1](tile)
elif task[0] == 'add_res':
tile += task[1].to(device)
task[1] = None
elif color_fix and task[0] == 'downsample':
for j in range(i, last_id + 1):
if task_queue[j][0] == 'store_res':
task_queue[j] = ('store_res_cpu', task_queue[j][1])
return True
else:
tile = task[1](tile)
try:
devices.test_for_nans(tile, "vae")
except:
print(f'Nan detected in fast mode estimation. Fast mode disabled.')
return False
raise IndexError('Should not reach here')
@perfcount
@torch.no_grad()
def vae_tile_forward(self, z):
"""
Decode a latent vector z into an image in a tiled manner.
@param z: latent vector
@return: image
"""
device = next(self.net.parameters()).device
dtype = z.dtype
net = self.net
tile_size = self.tile_size
is_decoder = self.is_decoder
z = z.detach() # detach the input to avoid backprop
N, height, width = z.shape[0], z.shape[2], z.shape[3]
net.last_z_shape = z.shape
# Split the input into tiles and build a task queue for each tile
print(f'[Tiled VAE]: input_size: {z.shape}, tile_size: {tile_size}, padding: {self.pad}')
in_bboxes, out_bboxes = self.split_tiles(height, width)
# Prepare tiles by split the input latents
tiles = []
for input_bbox in in_bboxes:
tile = z[:, :, input_bbox[2]:input_bbox[3], input_bbox[0]:input_bbox[1]].cpu()
tiles.append(tile)
num_tiles = len(tiles)
num_completed = 0
# Build task queues
single_task_queue = build_task_queue(net, is_decoder)
#print(single_task_queue)
if self.fast_mode:
# Fast mode: downsample the input image to the tile size,
# then estimate the group norm parameters on the downsampled image
scale_factor = tile_size / max(height, width)
z = z.to(device)
downsampled_z = F.interpolate(z, scale_factor=scale_factor, mode='nearest-exact')
# use nearest-exact to keep statictics as close as possible
print(f'[Tiled VAE]: Fast mode enabled, estimating group norm parameters on {downsampled_z.shape[3]} x {downsampled_z.shape[2]} image')
# ======= Special thanks to @Kahsolt for distribution shift issue ======= #
# The downsampling will heavily distort its mean and std, so we need to recover it.
std_old, mean_old = torch.std_mean(z, dim=[0, 2, 3], keepdim=True)
std_new, mean_new = torch.std_mean(downsampled_z, dim=[0, 2, 3], keepdim=True)
downsampled_z = (downsampled_z - mean_new) / std_new * std_old + mean_old
del std_old, mean_old, std_new, mean_new
# occasionally the std_new is too small or too large, which exceeds the range of float16
# so we need to clamp it to max z's range.
downsampled_z = torch.clamp_(downsampled_z, min=z.min(), max=z.max())
estimate_task_queue = clone_task_queue(single_task_queue)
if self.estimate_group_norm(downsampled_z, estimate_task_queue, color_fix=self.color_fix):
single_task_queue = estimate_task_queue
del downsampled_z
task_queues = [clone_task_queue(single_task_queue) for _ in range(num_tiles)]
# Dummy result
result = None
result_approx = None
#try:
# with devices.autocast():
# result_approx = torch.cat([F.interpolate(cheap_approximation(x).unsqueeze(0), scale_factor=opt_f, mode='nearest-exact') for x in z], dim=0).cpu()
#except: pass
# Free memory of input latent tensor
del z
# Task queue execution
pbar = tqdm(total=num_tiles * len(task_queues[0]), desc=f"[Tiled VAE]: Executing {'Decoder' if is_decoder else 'Encoder'} Task Queue: ")
# execute the task back and forth when switch tiles so that we always
# keep one tile on the GPU to reduce unnecessary data transfer
forward = True
interrupted = False
#state.interrupted = interrupted
while True:
#if state.interrupted: interrupted = True ; break
group_norm_param = GroupNormParam()
for i in range(num_tiles) if forward else reversed(range(num_tiles)):
#if state.interrupted: interrupted = True ; break
tile = tiles[i].to(device)
input_bbox = in_bboxes[i]
task_queue = task_queues[i]
interrupted = False
while len(task_queue) > 0:
#if state.interrupted: interrupted = True ; break
# DEBUG: current task
# print('Running task: ', task_queue[0][0], ' on tile ', i, '/', num_tiles, ' with shape ', tile.shape)
task = task_queue.pop(0)
if task[0] == 'pre_norm':
group_norm_param.add_tile(tile, task[1])
break
elif task[0] == 'store_res' or task[0] == 'store_res_cpu':
task_id = 0
res = task[1](tile)
if not self.fast_mode or task[0] == 'store_res_cpu':
res = res.cpu()
while task_queue[task_id][0] != 'add_res':
task_id += 1
task_queue[task_id][1] = res
elif task[0] == 'add_res':
tile += task[1].to(device)
task[1] = None
else:
tile = task[1](tile)
#print(tiles[i].shape, tile.shape, task)
pbar.update(1)
if interrupted: break
# check for NaNs in the tile.
# If there are NaNs, we abort the process to save user's time
#devices.test_for_nans(tile, "vae")
#print(tiles[i].shape, tile.shape, i, num_tiles)
if len(task_queue) == 0:
tiles[i] = None
num_completed += 1
if result is None: # NOTE: dim C varies from different cases, can only be inited dynamically
result = torch.zeros((N, tile.shape[1], height * 8 if is_decoder else height // 8, width * 8 if is_decoder else width // 8), device=device, requires_grad=False)
result[:, :, out_bboxes[i][2]:out_bboxes[i][3], out_bboxes[i][0]:out_bboxes[i][1]] = crop_valid_region(tile, in_bboxes[i], out_bboxes[i], is_decoder)
del tile
elif i == num_tiles - 1 and forward:
forward = False
tiles[i] = tile
elif i == 0 and not forward:
forward = True
tiles[i] = tile
else:
tiles[i] = tile.cpu()
del tile
if interrupted: break
if num_completed == num_tiles: break
# insert the group norm task to the head of each task queue
group_norm_func = group_norm_param.summary()
if group_norm_func is not None:
for i in range(num_tiles):
task_queue = task_queues[i]
task_queue.insert(0, ('apply_norm', group_norm_func))
# Done!
pbar.close()
return result.to(dtype) if result is not None else result_approx.to(device) |