sone-latest / app.py
yangtb24's picture
Update app.py
df482ac verified
import os
import time
import logging
import requests
import json
import random
import uuid
import concurrent.futures
import threading
import base64
import io
from PIL import Image
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api.siliconflow.cn/v1/chat/completions"
MODELS_ENDPOINT = "https://api.siliconflow.cn/v1/models"
EMBEDDINGS_ENDPOINT = "https://api.siliconflow.cn/v1/embeddings"
app = Flask(__name__)
text_models = []
free_text_models = []
embedding_models = []
free_embedding_models = []
image_models = []
free_image_models = []
invalid_keys_global = []
free_keys_global = []
unverified_keys_global = []
valid_keys_global = []
executor = concurrent.futures.ThreadPoolExecutor(max_workers=20)
model_key_indices = {}
request_timestamps = []
token_counts = []
data_lock = threading.Lock()
def get_credit_summary(api_key):
"""
使用 API 密钥获取额度信息。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.get(API_ENDPOINT, headers=headers)
response.raise_for_status()
data = response.json().get("data", {})
total_balance = data.get("totalBalance", 0)
return {"total_balance": float(total_balance)}
except requests.exceptions.RequestException as e:
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
return None
FREE_MODEL_TEST_KEY = (
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw"
)
FREE_IMAGE_LIST = [
"stabilityai/stable-diffusion-3-5-large",
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-3-medium",
"stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-2-1"
]
def test_model_availability(api_key, model_name):
"""
测试指定的模型是否可用。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json={
"model": model_name,
"messages": [{"role": "user", "content": "hi"}],
"max_tokens": 5,
"stream": False
},
timeout=5
)
if response.status_code == 429 or response.status_code == 200:
return True
else:
return False
except requests.exceptions.RequestException as e:
logging.error(
f"测试模型 {model_name} 可用性失败,"
f"API Key:{api_key},错误信息:{e}"
)
return False
def refresh_models():
"""
刷新模型列表和免费模型列表。
"""
global text_models, free_text_models
global embedding_models, free_embedding_models
global image_models, free_image_models
text_models = get_all_models(FREE_MODEL_TEST_KEY, "chat")
embedding_models = get_all_models(FREE_MODEL_TEST_KEY, "embedding")
image_models = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image")
free_text_models = []
free_embedding_models = []
free_image_models = []
ban_models_str = os.environ.get("BAN_MODELS")
ban_models = []
if ban_models_str:
try:
ban_models = json.loads(ban_models_str)
if not isinstance(ban_models, list):
logging.warning(
"环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。"
)
ban_models = []
except json.JSONDecodeError:
logging.warning(
"环境变量 BAN_MODELS JSON 解析失败,请检查格式。"
)
ban_models = []
text_models = [model for model in text_models if model not in ban_models]
embedding_models = [model for model in embedding_models if model not in ban_models]
image_models = [model for model in image_models if model not in ban_models]
with concurrent.futures.ThreadPoolExecutor(
max_workers=100
) as executor:
future_to_model = {
executor.submit(
test_model_availability,
FREE_MODEL_TEST_KEY,
model
): model for model in text_models
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
free_text_models.append(model)
except Exception as exc:
logging.error(f"模型 {model} 测试生成异常: {exc}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=100
) as executor:
future_to_model = {
executor.submit(
test_embedding_model_availability,
FREE_MODEL_TEST_KEY, model
): model for model in embedding_models
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
free_embedding_models.append(model)
except Exception as exc:
logging.error(f"模型 {model} 测试生成异常: {exc}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=100
) as executor:
future_to_model = {
executor.submit(
test_image_model_availability,
FREE_MODEL_TEST_KEY, model
): model for model in image_models
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
free_image_models.append(model)
except Exception as exc:
logging.error(f"模型 {model} 测试生成异常: {exc}")
logging.info(f"所有文本模型列表:{text_models}")
logging.info(f"免费文本模型列表:{free_text_models}")
logging.info(f"所有向量模型列表:{embedding_models}")
logging.info(f"免费向量模型列表:{free_embedding_models}")
logging.info(f"所有生图模型列表:{image_models}")
logging.info(f"免费生图模型列表:{free_image_models}")
def test_embedding_model_availability(api_key, model_name):
"""
测试指定的向量模型是否可用。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.post(
EMBEDDINGS_ENDPOINT,
headers=headers,
json={
"model": model_name,
"input": ["hi"],
},
timeout=10
)
if response.status_code == 429 or response.status_code == 200:
return True
else:
return False
except requests.exceptions.RequestException as e:
logging.error(
f"测试向量模型 {model_name} 可用性失败,"
f"API Key:{api_key},错误信息:{e}"
)
return False
def test_image_model_availability(api_key, model_name):
"""
测试指定的图像模型是否在 FREE_IMAGE_LIST 中。
如果在列表中,返回 True,否则返回 False。
"""
return model_name in FREE_IMAGE_LIST
def load_keys():
"""
从环境变量中加载 keys,进行去重,
并根据额度和模型可用性进行分类,
然后记录到日志中。
使用线程池并发处理每个 key。
"""
keys_str = os.environ.get("KEYS")
test_model = os.environ.get(
"TEST_MODEL",
"Pro/google/gemma-2-9b-it"
)
if keys_str:
keys = [key.strip() for key in keys_str.split(',')]
unique_keys = list(set(keys))
keys_str = ','.join(unique_keys)
os.environ["KEYS"] = keys_str
logging.info(f"加载的 keys:{unique_keys}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=20
) as executor:
future_to_key = {
executor.submit(
process_key, key, test_model
): key for key in unique_keys
}
invalid_keys = []
free_keys = []
unverified_keys = []
valid_keys = []
for future in concurrent.futures.as_completed(
future_to_key
):
key = future_to_key[future]
try:
key_type = future.result()
if key_type == "invalid":
invalid_keys.append(key)
elif key_type == "free":
free_keys.append(key)
elif key_type == "unverified":
unverified_keys.append(key)
elif key_type == "valid":
valid_keys.append(key)
except Exception as exc:
logging.error(f"处理 KEY {key} 生成异常: {exc}")
logging.info(f"无效 KEY:{invalid_keys}")
logging.info(f"免费 KEY:{free_keys}")
logging.info(f"未实名 KEY:{unverified_keys}")
logging.info(f"有效 KEY:{valid_keys}")
global invalid_keys_global, free_keys_global
global unverified_keys_global, valid_keys_global
invalid_keys_global = invalid_keys
free_keys_global = free_keys
unverified_keys_global = unverified_keys
valid_keys_global = valid_keys
else:
logging.warning("环境变量 KEYS 未设置。")
def process_key(key, test_model):
"""
处理单个 key,判断其类型。
"""
credit_summary = get_credit_summary(key)
if credit_summary is None:
return "invalid"
else:
total_balance = credit_summary.get("total_balance", 0)
if total_balance <= 0:
return "free"
else:
if test_model_availability(key, test_model):
return "valid"
else:
return "unverified"
def get_all_models(api_key, sub_type):
"""
获取所有模型列表。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.get(
MODELS_ENDPOINT,
headers=headers,
params={"sub_type": sub_type}
)
response.raise_for_status()
data = response.json()
if (
isinstance(data, dict) and
'data' in data and
isinstance(data['data'], list)
):
return [
model.get("id") for model in data["data"]
if isinstance(model, dict) and "id" in model
]
else:
logging.error("获取模型列表失败:响应数据格式不正确")
return []
except requests.exceptions.RequestException as e:
logging.error(
f"获取模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
except (KeyError, TypeError) as e:
logging.error(
f"解析模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
def determine_request_type(model_name, model_list, free_model_list):
"""
根据用户请求的模型判断请求类型。
"""
if model_name in free_model_list:
return "free"
elif model_name in model_list:
return "paid"
else:
return "unknown"
def select_key(request_type, model_name):
"""
根据请求类型和模型名称选择合适的 KEY,
并实现轮询和重试机制。
"""
if request_type == "free":
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
elif request_type == "paid":
available_keys = unverified_keys_global + valid_keys_global
else:
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
if not available_keys:
return None
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
if key_is_valid(key, request_type):
model_key_indices[model_name] = current_index
return key
else:
logging.warning(
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
)
model_key_indices[model_name] = 0
return None
def key_is_valid(key, request_type):
"""
检查 KEY 是否有效,
根据不同的请求类型进行不同的检查。
"""
if request_type == "invalid":
return False
credit_summary = get_credit_summary(key)
if credit_summary is None:
return False
total_balance = credit_summary.get("total_balance", 0)
if request_type == "free":
return True
elif request_type == "paid" or request_type == "unverified":
return total_balance > 0
else:
return False
def check_authorization(request):
"""
检查请求头中的 Authorization 字段
是否匹配环境变量 AUTHORIZATION_KEY。
"""
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,请设置后重试。")
return False
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
with data_lock:
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
return jsonify({"rpm": rpm, "tpm": tpm})
@app.route('/check_tokens', methods=['POST'])
def check_tokens():
tokens = request.json.get('tokens', [])
test_model = os.environ.get(
"TEST_MODEL",
"Pro/google/gemma-2-9b-it"
)
with concurrent.futures.ThreadPoolExecutor(
max_workers=20
) as executor:
future_to_token = {
executor.submit(
process_key, token, test_model
): token for token in tokens
}
results = []
for future in concurrent.futures.as_completed(future_to_token):
token = future_to_token[future]
try:
key_type = future.result()
credit_summary = get_credit_summary(token)
balance = (
credit_summary.get("total_balance", 0)
if credit_summary else 0
)
if key_type == "invalid":
results.append(
{
"token": token,
"type": "无效 KEY",
"balance": balance,
"message": "无法获取额度信息"
}
)
elif key_type == "free":
results.append(
{
"token": token,
"type": "免费 KEY",
"balance": balance,
"message": "额度不足"
}
)
elif key_type == "unverified":
results.append(
{
"token": token,
"type": "未实名 KEY",
"balance": balance,
"message": "无法使用指定模型"
}
)
elif key_type == "valid":
results.append(
{
"token": token,
"type": "有效 KEY",
"balance": balance,
"message": "可以使用指定模型"
}
)
except Exception as exc:
logging.error(
f"处理 Token {token} 生成异常: {exc}"
)
return jsonify(results)
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = []
for model in text_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [
{
"id": f"modelperm-{uuid.uuid4().hex}",
"object": "model_permission",
"created": 1678888888,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model,
"parent": None
})
for model in embedding_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [
{
"id": f"modelperm-{uuid.uuid4().hex}",
"object": "model_permission",
"created": 1678888888,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model,
"parent": None
})
for model in image_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [
{
"id": f"modelperm-{uuid.uuid4().hex}",
"object": "model_permission",
"created": 1678888888,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model,
"parent": None
})
return jsonify({
"success": True,
"data": detailed_models
})
def get_billing_info():
keys = valid_keys_global + unverified_keys_global
total_balance = 0
with concurrent.futures.ThreadPoolExecutor(
max_workers=20
) as executor:
futures = [
executor.submit(get_credit_summary, key) for key in keys
]
for future in concurrent.futures.as_completed(futures):
try:
credit_summary = future.result()
if credit_summary:
total_balance += credit_summary.get(
"total_balance",
0
)
except Exception as exc:
logging.error(f"获取额度信息生成异常: {exc}")
return total_balance
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
def billing_usage():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
end_date = datetime.now()
start_date = end_date - timedelta(days=30)
daily_usage = []
current_date = start_date
while current_date <= end_date:
daily_usage.append({
"timestamp": int(current_date.timestamp()),
"daily_usage": 0
})
current_date += timedelta(days=1)
return jsonify({
"object": "list",
"data": daily_usage,
"total_usage": 0
})
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
def billing_subscription():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
total_balance = get_billing_info()
return jsonify({
"object": "billing_subscription",
"has_payment_method": False,
"canceled": False,
"canceled_at": None,
"delinquent": None,
"access_until": int(datetime(9999, 12, 31).timestamp()),
"soft_limit": 0,
"hard_limit": total_balance,
"system_hard_limit": total_balance,
"soft_limit_usd": 0,
"hard_limit_usd": total_balance,
"system_hard_limit_usd": total_balance,
"plan": {
"name": "SiliconFlow API",
"id": "siliconflow-api"
},
"account_name": "SiliconFlow User",
"po_number": None,
"billing_email": None,
"tax_ids": [],
"billing_address": None,
"business_address": None
})
@app.route('/handsome/v1/embeddings', methods=['POST'])
def handsome_embeddings():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
embedding_models,
free_embedding_models
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
EMBEDDINGS_ENDPOINT,
headers=headers,
json=data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
embedding_data = response_json["data"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
embedding_data = []
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens)
return jsonify({
"object": "list",
"data": embedding_data,
"model": model_name,
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": prompt_tokens
}
})
except requests.exceptions.RequestException as e:
return jsonify({"error": str(e)}), 500
@app.route('/handsome/v1/images/generations', methods=['POST'])
def handsome_images_generations():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data.get('model')
request_type = determine_request_type(
model_name,
image_models,
free_image_models
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response_data = {}
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
siliconflow_data = {
"model": model_name,
"prompt": data.get("prompt"),
}
if model_name == "black-forest-labs/FLUX.1-pro":
siliconflow_data["width"] = data.get("width", 1024)
siliconflow_data["height"] = data.get("height", 768)
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
siliconflow_data["image_prompt"] = data.get("image_prompt")
siliconflow_data["steps"] = data.get("steps", 20)
siliconflow_data["guidance"] = data.get("guidance", 3)
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
siliconflow_data["interval"] = data.get("interval", 2)
siliconflow_data["output_format"] = data.get("output_format", "png")
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
siliconflow_data["width"] = 1024
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
siliconflow_data["height"] = 768
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
siliconflow_data["steps"] = 20
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
siliconflow_data["guidance"] = 3
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
siliconflow_data["safety_tolerance"] = 2
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
siliconflow_data["interval"] = 2
else:
siliconflow_data["image_size"] = data.get("image_size", "1024x1024")
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement", False)
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
siliconflow_data["batch_size"] = data.get("n", 1)
siliconflow_data["num_inference_steps"] = data.get("steps", 20)
siliconflow_data["guidance_scale"] = data.get("guidance_scale", 7.5)
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
if siliconflow_data["batch_size"] < 1:
siliconflow_data["batch_size"] = 1
if siliconflow_data["batch_size"] > 4:
siliconflow_data["batch_size"] = 4
if siliconflow_data["num_inference_steps"] < 1:
siliconflow_data["num_inference_steps"] = 1
if siliconflow_data["num_inference_steps"] > 50:
siliconflow_data["num_inference_steps"] = 50
if siliconflow_data["guidance_scale"] < 0:
siliconflow_data["guidance_scale"] = 0
if siliconflow_data["guidance_scale"] > 100:
siliconflow_data["guidance_scale"] = 100
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024","960x1280", "720x1440", "720x1280"]:
siliconflow_data["image_size"] = "1024x1024"
try:
start_time = time.time()
response = requests.post(
"https://api.siliconflow.cn/v1/images/generations",
headers=headers,
json=siliconflow_data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
openai_images = []
for item in images:
if isinstance(item, dict) and "url" in item:
image_url = item["url"]
print(f"image_url: {image_url}")
if data.get("response_format") == "b64_json":
try:
image_data = requests.get(image_url, stream=True).raw
image = Image.open(image_data)
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
openai_images.append({"b64_json": img_str})
except Exception as e:
logging.error(f"图片转base64失败: {e}")
openai_images.append({"url": image_url})
else:
openai_images.append({"url": image_url})
else:
logging.error(f"无效的图片数据: {item}")
openai_images.append({"url": item})
response_data = {
"created": int(time.time()),
"data": openai_images
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"created": int(time.time()),
"data": []
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
return jsonify({"error": "Unsupported model"}), 400
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
text_models + image_models,
free_text_models + free_image_models
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
if model_name in image_models:
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
siliconflow_data = {
"model": model_name,
"prompt": user_content,
}
if model_name == "black-forest-labs/FLUX.1-pro":
siliconflow_data["width"] = data.get("width", 1024)
siliconflow_data["height"] = data.get("height", 768)
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
siliconflow_data["image_prompt"] = data.get("image_prompt")
siliconflow_data["steps"] = data.get("steps", 20)
siliconflow_data["guidance"] = data.get("guidance", 3)
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
siliconflow_data["interval"] = data.get("interval", 2)
siliconflow_data["output_format"] = data.get("output_format", "png")
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
siliconflow_data["width"] = 1024
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
siliconflow_data["height"] = 768
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
siliconflow_data["steps"] = 20
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
siliconflow_data["guidance"] = 3
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
siliconflow_data["safety_tolerance"] = 2
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
siliconflow_data["interval"] = 2
else:
siliconflow_data["image_size"] = "1024x1024"
siliconflow_data["batch_size"] = 1
siliconflow_data["num_inference_steps"] = 20
siliconflow_data["guidance_scale"] = 7.5
siliconflow_data["prompt_enhancement"] = False
if data.get("size"):
siliconflow_data["image_size"] = data.get("size")
if data.get("n"):
siliconflow_data["batch_size"] = data.get("n")
if data.get("steps"):
siliconflow_data["num_inference_steps"] = data.get("steps")
if data.get("guidance_scale"):
siliconflow_data["guidance_scale"] = data.get("guidance_scale")
if data.get("negative_prompt"):
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
if data.get("seed"):
siliconflow_data["seed"] = data.get("seed")
if data.get("prompt_enhancement"):
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement")
if siliconflow_data["batch_size"] < 1:
siliconflow_data["batch_size"] = 1
if siliconflow_data["batch_size"] > 4:
siliconflow_data["batch_size"] = 4
if siliconflow_data["num_inference_steps"] < 1:
siliconflow_data["num_inference_steps"] = 1
if siliconflow_data["num_inference_steps"] > 50:
siliconflow_data["num_inference_steps"] = 50
if siliconflow_data["guidance_scale"] < 0:
siliconflow_data["guidance_scale"] = 0
if siliconflow_data["guidance_scale"] > 100:
siliconflow_data["guidance_scale"] = 100
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]:
siliconflow_data["image_size"] = "1024x1024"
try:
start_time = time.time()
response = requests.post(
"https://api.siliconflow.cn/v1/images/generations",
headers=headers,
json=siliconflow_data,
timeout=120,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
try:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
images = response_json.get("images", [])
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
markdown_image_link = f"![image]({image_url})"
if image_url:
chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": markdown_image_link
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
full_response_content = markdown_image_link
else:
chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": "Failed to generate image"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
full_response_content = "Failed to generate image"
end_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
error_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": f"Error: {str(e)}"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
end_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
logging.info(
f"使用的key: {api_key}, "
f"使用的模型: {model_name}"
)
yield "data: [DONE]\n\n".encode('utf-8')
return Response(stream_with_context(generate()), content_type='text/event-stream')
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
markdown_image_link = f"![image]({image_url})"
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": markdown_image_link if image_url else "Failed to generate image",
},
"finish_reason": "stop",
}
],
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Failed to process image data",
},
"finish_reason": "stop",
}
],
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False),
timeout=60
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=1024):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
response_content = ""
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens = response_json[
"usage"
]["completion_tokens"]
if (
"choices" in response_json and
len(response_json["choices"]) > 0 and
"delta" in response_json["choices"][0] and
"content" in response_json[
"choices"
][0]["delta"]
):
response_content += response_json[
"choices"
][0]["delta"]["content"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json[
"usage"
]["completion_tokens"]
response_content = response_json[
"choices"
][0]["message"]["content"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = ""
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") + " "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts.append(0)
return jsonify(response_json)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
import json
logging.info(f"环境变量:{os.environ}")
invalid_keys_global = []
free_keys_global = []
unverified_keys_global = []
valid_keys_global = []
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(
debug=False,
host='0.0.0.0',
port=int(os.environ.get('PORT', 7860))
)