Spaces:
Running
Running
File size: 47,146 Bytes
ddaefda bae67bf 79bb4ee ffd6919 c31239d 6eb16ad 8e3da9c ae8d22c bae67bf ba8e699 4d3fe36 6be1fe2 ddaefda 4d3fe36 e5dce64 ba8e699 c31239d bae67bf 16b7f0b 989684f c31239d 50f1e91 ba8e699 1211b2c 91ee28f 8e3da9c 84eaeb7 bae67bf 84eaeb7 bae67bf 84eaeb7 bae67bf db69584 76f9b1e e5dce64 72588b7 bae67bf 84eaeb7 bae67bf 22197b0 6b0a5df 7206b9b 182b468 7206b9b e5dce64 22197b0 00407d4 22197b0 c31239d e5dce64 6b0a5df e5dce64 22197b0 e5dce64 6b0a5df fa5b8a0 22197b0 50f1e91 8ea742a 45a91e1 8ca184b e52da11 989684f c31239d 50f1e91 d155e37 8ea742a d5f2e9b 8ea742a 22197b0 00407d4 22197b0 fa5b8a0 22197b0 45a91e1 d155e37 fa5b8a0 d155e37 6b0a5df 22197b0 00407d4 22197b0 c31239d 22197b0 6711564 45a91e1 22197b0 45a91e1 fa5b8a0 50f1e91 9fae181 50f1e91 fa5b8a0 c31239d 50f1e91 c31239d 22197b0 45a91e1 c31239d 22197b0 c31239d 50f1e91 7206b9b 50f1e91 7206b9b e5dce64 84eaeb7 ddaefda 22197b0 91ee28f ddaefda 22197b0 e5dce64 ddaefda 22197b0 91ee28f 22197b0 91ee28f e5dce64 91ee28f e5dce64 91ee28f 22197b0 ba8e699 e5dce64 ddaefda bae67bf 8d91d51 91ee28f c31239d ba8e699 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 2f8cff3 ba8e699 2f8cff3 ba8e699 91ee28f ba8e699 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 91ee28f c31239d 91ee28f 22197b0 91ee28f 22197b0 91ee28f 6001b99 c31239d 91ee28f c31239d 91ee28f c31239d 91ee28f 6001b99 91ee28f 6001b99 91ee28f 6001b99 ba8e699 09735d0 22197b0 09735d0 bae67bf 84eaeb7 22197b0 bae67bf 16b7f0b 8e3da9c 16b7f0b 76f9b1e 22197b0 91ee28f 22197b0 91ee28f c31239d 22197b0 91ee28f 22197b0 91ee28f c31239d 22197b0 91ee28f c31239d 22197b0 91ee28f 22197b0 76f9b1e 56b8faf fccd514 09735d0 ba8e699 fccd514 22197b0 cd15040 22197b0 fccd514 91ee28f ba8e699 c31239d 22197b0 6eb16ad ba8e699 fccd514 cd15040 02d4ff9 cd15040 fccd514 cd15040 fccd514 cd15040 fccd514 cd15040 ba8e699 cd15040 fccd514 cd15040 fccd514 cd15040 fccd514 ae4ac7f fccd514 02d4ff9 cd15040 02d4ff9 1e64840 02d4ff9 fccd514 02d4ff9 fccd514 02d4ff9 1e64840 cd15040 fccd514 cd15040 02d4ff9 1e64840 02d4ff9 1e64840 cd15040 fccd514 cd15040 ae4ac7f 064de81 cd15040 fccd514 cd15040 fccd514 cd15040 fccd514 cd15040 fccd514 cd15040 fccd514 6eb16ad cd15040 ba8e699 1211b2c 3453169 1211b2c c65ed88 8fe2919 989684f c65ed88 8fe2919 b18e21c 8fe2919 c65ed88 ffd6919 c65ed88 3453169 f5287ea c65ed88 3453169 6c7bdc0 ae8d22c 91ee28f 3453169 91ee28f 22197b0 91ee28f 22197b0 91ee28f ae8d22c 9932fa3 ae8d22c 9932fa3 ae8d22c 8fe2919 ae8d22c 3453169 ae8d22c 3453169 ae8d22c 91ee28f ae8d22c 3453169 1211b2c c31239d 22197b0 c31239d 22197b0 c31239d 22197b0 c31239d 22197b0 c31239d 22197b0 c31239d b34c36b c31239d 6eb16ad 4497eab 47be5c2 b918005 4497eab b918005 4497eab b918005 4497eab b918005 4497eab b918005 4497eab b918005 47be5c2 47b958d 47be5c2 47b958d 47be5c2 b918005 47be5c2 4497eab b918005 4497eab b918005 4497eab 47be5c2 4497eab b918005 4497eab bae67bf 6001b99 b5f4c34 db69584 ba8e699 22197b0 16b7f0b db69584 ba8e699 22197b0 3c0d2e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 |
import os
import time
import logging
import requests
import json
import random
import uuid
import concurrent.futures
import threading
from datetime import datetime, timedelta
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api.siliconflow.cn/v1/chat/completions"
MODELS_ENDPOINT = "https://api.siliconflow.cn/v1/models"
EMBEDDINGS_ENDPOINT = "https://api.siliconflow.cn/v1/embeddings"
app = Flask(__name__)
text_models = []
free_text_models = []
embedding_models = []
free_embedding_models = []
image_models = []
free_image_models = []
invalid_keys_global = []
free_keys_global = []
unverified_keys_global = []
valid_keys_global = []
executor = concurrent.futures.ThreadPoolExecutor(max_workers=20)
model_key_indices = {}
request_timestamps = []
token_counts = []
data_lock = threading.Lock()
def get_credit_summary(api_key):
"""
使用 API 密钥获取额度信息。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.get(API_ENDPOINT, headers=headers)
response.raise_for_status()
data = response.json().get("data", {})
total_balance = data.get("totalBalance", 0)
return {"total_balance": float(total_balance)}
except requests.exceptions.RequestException as e:
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
return None
FREE_MODEL_TEST_KEY = (
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw"
)
FREE_IMAGE_LIST = [
"stabilityai/stable-diffusion-3-5-large",
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-3-medium",
"stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-2-1"
]
def test_model_availability(api_key, model_name):
"""
测试指定的模型是否可用。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json={
"model": model_name,
"messages": [{"role": "user", "content": "hi"}],
"max_tokens": 5,
"stream": False
},
timeout=5
)
if response.status_code == 429 or response.status_code == 200:
return True
else:
return False
except requests.exceptions.RequestException as e:
logging.error(
f"测试模型 {model_name} 可用性失败,"
f"API Key:{api_key},错误信息:{e}"
)
return False
def refresh_models():
"""
刷新模型列表和免费模型列表。
"""
global text_models, free_text_models
global embedding_models, free_embedding_models
global image_models, free_image_models
text_models = get_all_models(FREE_MODEL_TEST_KEY, "chat")
embedding_models = get_all_models(FREE_MODEL_TEST_KEY, "embedding")
image_models = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image")
free_text_models = []
free_embedding_models = []
free_image_models = []
ban_models_str = os.environ.get("BAN_MODELS")
ban_models = []
if ban_models_str:
try:
ban_models = json.loads(ban_models_str)
if not isinstance(ban_models, list):
logging.warning(
"环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。"
)
ban_models = []
except json.JSONDecodeError:
logging.warning(
"环境变量 BAN_MODELS JSON 解析失败,请检查格式。"
)
ban_models = []
text_models = [model for model in text_models if model not in ban_models]
embedding_models = [model for model in embedding_models if model not in ban_models]
image_models = [model for model in image_models if model not in ban_models]
with concurrent.futures.ThreadPoolExecutor(
max_workers=100
) as executor:
future_to_model = {
executor.submit(
test_model_availability,
FREE_MODEL_TEST_KEY,
model
): model for model in text_models
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
free_text_models.append(model)
except Exception as exc:
logging.error(f"模型 {model} 测试生成异常: {exc}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=100
) as executor:
future_to_model = {
executor.submit(
test_embedding_model_availability,
FREE_MODEL_TEST_KEY, model
): model for model in embedding_models
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
free_embedding_models.append(model)
except Exception as exc:
logging.error(f"模型 {model} 测试生成异常: {exc}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=100
) as executor:
future_to_model = {
executor.submit(
test_image_model_availability,
FREE_MODEL_TEST_KEY, model
): model for model in image_models
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
free_image_models.append(model)
except Exception as exc:
logging.error(f"模型 {model} 测试生成异常: {exc}")
logging.info(f"所有文本模型列表:{text_models}")
logging.info(f"免费文本模型列表:{free_text_models}")
logging.info(f"所有向量模型列表:{embedding_models}")
logging.info(f"免费向量模型列表:{free_embedding_models}")
logging.info(f"所有生图模型列表:{image_models}")
logging.info(f"免费生图模型列表:{free_image_models}")
def test_embedding_model_availability(api_key, model_name):
"""
测试指定的向量模型是否可用。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.post(
EMBEDDINGS_ENDPOINT,
headers=headers,
json={
"model": model_name,
"input": ["hi"],
},
timeout=10
)
if response.status_code == 429 or response.status_code == 200:
return True
else:
return False
except requests.exceptions.RequestException as e:
logging.error(
f"测试向量模型 {model_name} 可用性失败,"
f"API Key:{api_key},错误信息:{e}"
)
return False
def test_image_model_availability(api_key, model_name):
"""
测试指定的图像模型是否在 FREE_IMAGE_LIST 中。
如果在列表中,返回 True,否则返回 False。
"""
return model_name in FREE_IMAGE_LIST
def load_keys():
"""
从环境变量中加载 keys,进行去重,
并根据额度和模型可用性进行分类,
然后记录到日志中。
使用线程池并发处理每个 key。
"""
keys_str = os.environ.get("KEYS")
test_model = os.environ.get(
"TEST_MODEL",
"Pro/google/gemma-2-9b-it"
)
if keys_str:
keys = [key.strip() for key in keys_str.split(',')]
unique_keys = list(set(keys))
keys_str = ','.join(unique_keys)
os.environ["KEYS"] = keys_str
logging.info(f"加载的 keys:{unique_keys}")
with concurrent.futures.ThreadPoolExecutor(
max_workers=20
) as executor:
future_to_key = {
executor.submit(
process_key, key, test_model
): key for key in unique_keys
}
invalid_keys = []
free_keys = []
unverified_keys = []
valid_keys = []
for future in concurrent.futures.as_completed(
future_to_key
):
key = future_to_key[future]
try:
key_type = future.result()
if key_type == "invalid":
invalid_keys.append(key)
elif key_type == "free":
free_keys.append(key)
elif key_type == "unverified":
unverified_keys.append(key)
elif key_type == "valid":
valid_keys.append(key)
except Exception as exc:
logging.error(f"处理 KEY {key} 生成异常: {exc}")
logging.info(f"无效 KEY:{invalid_keys}")
logging.info(f"免费 KEY:{free_keys}")
logging.info(f"未实名 KEY:{unverified_keys}")
logging.info(f"有效 KEY:{valid_keys}")
global invalid_keys_global, free_keys_global
global unverified_keys_global, valid_keys_global
invalid_keys_global = invalid_keys
free_keys_global = free_keys
unverified_keys_global = unverified_keys
valid_keys_global = valid_keys
else:
logging.warning("环境变量 KEYS 未设置。")
def process_key(key, test_model):
"""
处理单个 key,判断其类型。
"""
credit_summary = get_credit_summary(key)
if credit_summary is None:
return "invalid"
else:
total_balance = credit_summary.get("total_balance", 0)
if total_balance <= 0:
return "free"
else:
if test_model_availability(key, test_model):
return "valid"
else:
return "unverified"
def get_all_models(api_key, sub_type):
"""
获取所有模型列表。
"""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = requests.get(
MODELS_ENDPOINT,
headers=headers,
params={"sub_type": sub_type}
)
response.raise_for_status()
data = response.json()
if (
isinstance(data, dict) and
'data' in data and
isinstance(data['data'], list)
):
return [
model.get("id") for model in data["data"]
if isinstance(model, dict) and "id" in model
]
else:
logging.error("获取模型列表失败:响应数据格式不正确")
return []
except requests.exceptions.RequestException as e:
logging.error(
f"获取模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
except (KeyError, TypeError) as e:
logging.error(
f"解析模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
def determine_request_type(model_name, model_list, free_model_list):
"""
根据用户请求的模型判断请求类型。
"""
if model_name in free_model_list:
return "free"
elif model_name in model_list:
return "paid"
else:
return "unknown"
def select_key(request_type, model_name):
"""
根据请求类型和模型名称选择合适的 KEY,
并实现轮询和重试机制。
"""
if request_type == "free":
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
elif request_type == "paid":
available_keys = unverified_keys_global + valid_keys_global
else:
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
if not available_keys:
return None
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
if key_is_valid(key, request_type):
model_key_indices[model_name] = current_index
return key
else:
logging.warning(
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
)
model_key_indices[model_name] = 0
return None
def key_is_valid(key, request_type):
"""
检查 KEY 是否有效,
根据不同的请求类型进行不同的检查。
"""
if request_type == "invalid":
return False
credit_summary = get_credit_summary(key)
if credit_summary is None:
return False
total_balance = credit_summary.get("total_balance", 0)
if request_type == "free":
return True
elif request_type == "paid" or request_type == "unverified":
return total_balance > 0
else:
return False
def check_authorization(request):
"""
检查请求头中的 Authorization 字段
是否匹配环境变量 AUTHORIZATION_KEY。
"""
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,请设置后重试。")
return False
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
with data_lock:
# Clean up old data
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
return jsonify({"rpm": rpm, "tpm": tpm})
@app.route('/check_tokens', methods=['POST'])
def check_tokens():
tokens = request.json.get('tokens', [])
test_model = os.environ.get(
"TEST_MODEL",
"Pro/google/gemma-2-9b-it"
)
with concurrent.futures.ThreadPoolExecutor(
max_workers=20
) as executor:
future_to_token = {
executor.submit(
process_key, token, test_model
): token for token in tokens
}
results = []
for future in concurrent.futures.as_completed(future_to_token):
token = future_to_token[future]
try:
key_type = future.result()
credit_summary = get_credit_summary(token)
balance = (
credit_summary.get("total_balance", 0)
if credit_summary else 0
)
if key_type == "invalid":
results.append(
{
"token": token,
"type": "无效 KEY",
"balance": balance,
"message": "无法获取额度信息"
}
)
elif key_type == "free":
results.append(
{
"token": token,
"type": "免费 KEY",
"balance": balance,
"message": "额度不足"
}
)
elif key_type == "unverified":
results.append(
{
"token": token,
"type": "未实名 KEY",
"balance": balance,
"message": "无法使用指定模型"
}
)
elif key_type == "valid":
results.append(
{
"token": token,
"type": "有效 KEY",
"balance": balance,
"message": "可以使用指定模型"
}
)
except Exception as exc:
logging.error(
f"处理 Token {token} 生成异常: {exc}"
)
return jsonify(results)
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
text_models + image_models,
free_text_models + free_image_models
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
if model_name in image_models:
# Handle image generation
# Map OpenAI-style parameters to SiliconFlow's parameters
siliconflow_data = {
"model": model_name,
"prompt": data.get("messages", [{}])[0].get("content") if isinstance(data.get("messages"), list) else "",
"image_size": data.get("size", "1024x1024"),
"batch_size": data.get("n", 1),
"num_inference_steps": data.get("steps", 20),
"guidance_scale": data.get("guidance_scale", 7.5),
"negative_prompt": data.get("negative_prompt"),
"seed": data.get("seed"),
"prompt_enhancement": False,
}
# Parameter validation and adjustments
if siliconflow_data["batch_size"] < 1:
siliconflow_data["batch_size"] = 1
if siliconflow_data["batch_size"] > 4:
siliconflow_data["batch_size"] = 4
if siliconflow_data["num_inference_steps"] < 1:
siliconflow_data["num_inference_steps"] = 1
if siliconflow_data["num_inference_steps"] > 50:
siliconflow_data["num_inference_steps"] = 50
if siliconflow_data["guidance_scale"] < 0:
siliconflow_data["guidance_scale"] = 0
if siliconflow_data["guidance_scale"] > 100:
siliconflow_data["guidance_scale"] = 100
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024"]:
siliconflow_data["image_size"] = "1024x1024"
try:
start_time = time.time()
response = requests.post(
"https://api.siliconflow.cn/v1/images/generations",
headers=headers,
json=siliconflow_data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
# Extract the first URL if available
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
# Construct the expected JSON output - Mimicking OpenAI
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"system_fingerprint": "", # Added system_fingerprint
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": None, # set to None as image is in tool_calls
"tool_calls": [
{
"id": f"call_{uuid.uuid4()}",
"type": "function",
"function": {
"name": "image_generation",
"arguments": json.dumps({
"image_url": image_url
})
}
}
]
},
"finish_reason": "tool_calls",
}
],
"usage": { # Added usage
"completion_tokens": 0,
"prompt_tokens": 0,
"total_tokens": 0
}
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"system_fingerprint": "", # Added system_fingerprint
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Failed to process image data",
},
"finish_reason": "stop",
}
],
"usage": { # Added usage
"completion_tokens": 0,
"prompt_tokens": 0,
"total_tokens": 0
}
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0) # Image generation doesn't use tokens
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
# Existing text-based model handling logic
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False),
timeout=60
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=1024):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
response_content = ""
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens = response_json[
"usage"
]["completion_tokens"]
if (
"choices" in response_json and
len(response_json["choices"]) > 0 and
"delta" in response_json["choices"][0] and
"content" in response_json[
"choices"
][0]["delta"]
):
response_content += response_json[
"choices"
][0]["delta"]["content"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json[
"usage"
]["completion_tokens"]
response_content = response_json[
"choices"
][0]["message"]["content"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = ""
user_content = ""
messages = data.get("messages", [])
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if (
isinstance(item, dict) and
item.get("type") == "text"
):
user_content += (
item.get("text", "") +
" "
)
user_content = user_content.strip()
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts.append(0)
return jsonify(response_json)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = []
for model in text_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [
{
"id": f"modelperm-{uuid.uuid4().hex}",
"object": "model_permission",
"created": 1678888888,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model,
"parent": None
})
for model in embedding_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [
{
"id": f"modelperm-{uuid.uuid4().hex}",
"object": "model_permission",
"created": 1678888888,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model,
"parent": None
})
for model in image_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [
{
"id": f"modelperm-{uuid.uuid4().hex}",
"object": "model_permission",
"created": 1678888888,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model,
"parent": None
})
return jsonify({
"success": True,
"data": detailed_models
})
def get_billing_info():
keys = valid_keys_global + unverified_keys_global
total_balance = 0
with concurrent.futures.ThreadPoolExecutor(
max_workers=20
) as executor:
futures = [
executor.submit(get_credit_summary, key) for key in keys
]
for future in concurrent.futures.as_completed(futures):
try:
credit_summary = future.result()
if credit_summary:
total_balance += credit_summary.get(
"total_balance",
0
)
except Exception as exc:
logging.error(f"获取额度信息生成异常: {exc}")
return total_balance
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
def billing_usage():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
end_date = datetime.now()
start_date = end_date - timedelta(days=30)
daily_usage = []
current_date = start_date
while current_date <= end_date:
daily_usage.append({
"timestamp": int(current_date.timestamp()),
"daily_usage": 0
})
current_date += timedelta(days=1)
return jsonify({
"object": "list",
"data": daily_usage,
"total_usage": 0
})
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
def billing_subscription():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
total_balance = get_billing_info()
return jsonify({
"object": "billing_subscription",
"has_payment_method": False,
"canceled": False,
"canceled_at": None,
"delinquent": None,
"access_until": int(datetime(9999, 12, 31).timestamp()),
"soft_limit": 0,
"hard_limit": total_balance,
"system_hard_limit": total_balance,
"soft_limit_usd": 0,
"hard_limit_usd": total_balance,
"system_hard_limit_usd": total_balance,
"plan": {
"name": "SiliconFlow API",
"id": "siliconflow-api"
},
"account_name": "SiliconFlow User",
"po_number": None,
"billing_email": None,
"tax_ids": [],
"billing_address": None,
"business_address": None
})
@app.route('/handsome/v1/embeddings', methods=['POST'])
def handsome_embeddings():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
embedding_models,
free_embedding_models
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
EMBEDDINGS_ENDPOINT,
headers=headers,
json=data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
embedding_data = response_json["data"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
embedding_data = []
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens)
return jsonify({
"object": "list",
"data": embedding_data,
"model": model_name,
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": prompt_tokens
}
})
except requests.exceptions.RequestException as e:
return jsonify({"error": str(e)}), 500
import base64
import io
from PIL import Image
@app.route('/handsome/v1/images/generations', methods=['POST'])
def handsome_images_generations():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
model_name = data.get('model')
request_type = determine_request_type(
model_name,
image_models,
free_image_models
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response_data = {}
if "stable-diffusion" in model_name:
# Map OpenAI-style parameters to SiliconFlow's parameters
siliconflow_data = {
"model": model_name,
"prompt": data.get("prompt"),
"image_size": data.get("size", "1024x1024"),
"batch_size": data.get("n", 1),
"num_inference_steps": data.get("steps", 20),
"guidance_scale": data.get("guidance_scale", 7.5),
"negative_prompt": data.get("negative_prompt"),
"seed": data.get("seed"),
"prompt_enhancement": False,
}
# Parameter validation and adjustments
if siliconflow_data["batch_size"] < 1:
siliconflow_data["batch_size"] = 1
if siliconflow_data["batch_size"] > 4:
siliconflow_data["batch_size"] = 4
if siliconflow_data["num_inference_steps"] < 1:
siliconflow_data["num_inference_steps"] = 1
if siliconflow_data["num_inference_steps"] > 50:
siliconflow_data["num_inference_steps"] = 50
if siliconflow_data["guidance_scale"] < 0:
siliconflow_data["guidance_scale"] = 0
if siliconflow_data["guidance_scale"] > 100:
siliconflow_data["guidance_scale"] = 100
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024"]:
siliconflow_data["image_size"] = "1024x1024"
try:
start_time = time.time()
response = requests.post(
"https://api.siliconflow.cn/v1/images/generations",
headers=headers,
json=siliconflow_data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
openai_images = []
for item in images:
if isinstance(item, dict) and "url" in item:
image_url = item["url"]
print(f"image_url: {image_url}") # 打印 URL
if data.get("response_format") == "b64_json":
try:
image_data = requests.get(image_url, stream=True).raw
image = Image.open(image_data)
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
openai_images.append({"b64_json": img_str})
except Exception as e:
logging.error(f"图片转base64失败: {e}")
openai_images.append({"url": image_url})
else:
openai_images.append({"url": image_url})
else:
logging.error(f"无效的图片数据: {item}")
openai_images.append({"url": item})
response_data = {
"created": int(time.time()),
"data": openai_images
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"created": int(time.time()),
"data": []
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0) # Image generation doesn't use tokens
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
return jsonify({"error": "Unsupported model"}), 400
if __name__ == '__main__':
import json
logging.info(f"环境变量:{os.environ}")
invalid_keys_global = []
free_keys_global = []
unverified_keys_global = []
valid_keys_global = []
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(
debug=False,
host='0.0.0.0',
port=int(os.environ.get('PORT', 7860))
) |