|
from fastapi import FastAPI, HTTPException, Header, Request
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.responses import StreamingResponse
|
|
from pydantic import BaseModel
|
|
import openai
|
|
from typing import List, Optional
|
|
import logging
|
|
from itertools import cycle
|
|
import asyncio
|
|
|
|
import uvicorn
|
|
|
|
from app import config
|
|
|
|
|
|
logging.basicConfig(
|
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
|
|
API_KEYS = config.settings.API_KEYS
|
|
|
|
|
|
key_cycle = cycle(API_KEYS)
|
|
key_lock = asyncio.Lock()
|
|
|
|
|
|
class ChatRequest(BaseModel):
|
|
messages: List[dict]
|
|
model: str = "llama-3.2-90b-text-preview"
|
|
temperature: Optional[float] = 0.7
|
|
max_tokens: Optional[int] = 8000
|
|
stream: Optional[bool] = False
|
|
|
|
|
|
async def verify_authorization(authorization: str = Header(None)):
|
|
if not authorization:
|
|
logger.error("Missing Authorization header")
|
|
raise HTTPException(status_code=401, detail="Missing Authorization header")
|
|
if not authorization.startswith("Bearer "):
|
|
logger.error("Invalid Authorization header format")
|
|
raise HTTPException(
|
|
status_code=401, detail="Invalid Authorization header format"
|
|
)
|
|
token = authorization.replace("Bearer ", "")
|
|
if token not in config.settings.ALLOWED_TOKENS:
|
|
logger.error("Invalid token")
|
|
raise HTTPException(status_code=401, detail="Invalid token")
|
|
return token
|
|
|
|
|
|
@app.get("/v1/models")
|
|
async def list_models(authorization: str = Header(None)):
|
|
await verify_authorization(authorization)
|
|
async with key_lock:
|
|
api_key = next(key_cycle)
|
|
logger.info(f"Using API key: {api_key[:8]}...")
|
|
try:
|
|
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
|
|
response = client.models.list()
|
|
logger.info("Successfully retrieved models list")
|
|
return response
|
|
except Exception as e:
|
|
logger.error(f"Error listing models: {str(e)}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@app.post("/v1/chat/completions")
|
|
async def chat_completion(request: ChatRequest, authorization: str = Header(None)):
|
|
await verify_authorization(authorization)
|
|
async with key_lock:
|
|
api_key = next(key_cycle)
|
|
logger.info(f"Using API key: {api_key[:8]}...")
|
|
|
|
try:
|
|
logger.info(f"Chat completion request - Model: {request.model}")
|
|
client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
|
|
response = client.chat.completions.create(
|
|
model=request.model,
|
|
messages=request.messages,
|
|
temperature=request.temperature,
|
|
max_tokens=request.max_tokens,
|
|
stream=request.stream if hasattr(request, "stream") else False,
|
|
)
|
|
|
|
if hasattr(request, "stream") and request.stream:
|
|
logger.info("Streaming response enabled")
|
|
|
|
async def generate():
|
|
for chunk in response:
|
|
yield f"data: {chunk.model_dump_json()}\n\n"
|
|
|
|
return StreamingResponse(content=generate(), media_type="text/event-stream")
|
|
|
|
logger.info("Chat completion successful")
|
|
return response
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in chat completion: {str(e)}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@app.get("/health")
|
|
async def health_check(authorization: str = Header(None)):
|
|
await verify_authorization(authorization)
|
|
logger.info("Health check endpoint called")
|
|
return {"status": "healthy"}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
uvicorn.run(app, host="0.0.0.0", port=8000) |