File size: 6,046 Bytes
960a587
 
 
 
 
8985b5a
960a587
 
 
 
 
 
 
0a61a36
 
960a587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6845e0
 
960a587
 
2181206
576c48b
2181206
2aacb46
2181206
 
960a587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4bd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960a587
 
 
 
 
 
46d8231
960a587
fd4bd23
960a587
 
 
 
 
 
 
 
 
 
 
 
 
fa71439
960a587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960a587
 
 
 
 
 
 
 
4d8ee18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import openai
from typing import List, Optional,Union
import logging
from itertools import cycle
import asyncio

import uvicorn

from app import config
import requests
from datetime import datetime, timezone

# 配置日志
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

app = FastAPI()

# 允许跨域
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# API密钥配置
API_KEYS = config.settings.API_KEYS

# 创建一个循环迭代器
key_cycle = cycle(API_KEYS)
key_lock = asyncio.Lock()


class ChatRequest(BaseModel):
    messages: List[dict]
    model: str = "llama-3.2-90b-text-preview"
    temperature: Optional[float] = 0.7
    stream: Optional[bool] = False
    tools: Optional[List[dict]] = []
    tool_choice: Optional[str] = "auto"


class EmbeddingRequest(BaseModel):
    input: Union[str, List[str]]
    model: str = "text-embedding-004"
    encoding_format: Optional[str] = "float"


async def verify_authorization(authorization: str = Header(None)):
    if not authorization:
        logger.error("Missing Authorization header")
        raise HTTPException(status_code=401, detail="Missing Authorization header")
    if not authorization.startswith("Bearer "):
        logger.error("Invalid Authorization header format")
        raise HTTPException(
            status_code=401, detail="Invalid Authorization header format"
        )
    token = authorization.replace("Bearer ", "")
    if token not in config.settings.ALLOWED_TOKENS:
        logger.error("Invalid token")
        raise HTTPException(status_code=401, detail="Invalid token")
    return token


def get_gemini_models(api_key):
    base_url = "https://generativelanguage.googleapis.com/v1beta"
    url = f"{base_url}/models?key={api_key}"
    
    try:
        response = requests.get(url)
        if response.status_code == 200:
            gemini_models = response.json()
            return convert_to_openai_format(gemini_models)
        else:
            print(f"Error: {response.status_code}")
            print(response.text)
            return None
    
    except requests.RequestException as e:
        print(f"Request failed: {e}")
        return None

def convert_to_openai_format(gemini_models):
    openai_format = {
        "object": "list",
        "data": []
    }
    
    for model in gemini_models.get('models', []):
        openai_model = {
            "id": model['name'].split('/')[-1],  # 取最后一部分作为ID
            "object": "model",
            "created": int(datetime.now(timezone.utc).timestamp()),  # 使用当前时间戳
            "owned_by": "google",  # 假设所有Gemini模型都由Google拥有
            "permission": [],  # Gemini API可能没有直接对应的权限信息
            "root": model['name'],
            "parent": None,  # Gemini API可能没有直接对应的父模型信息
        }
        openai_format["data"].append(openai_model)
    
    return openai_format
        

@app.get("/v1/models")
@app.get("/hf/v1/models")
async def list_models(authorization: str = Header(None)):
    await verify_authorization(authorization)
    async with key_lock:
        api_key = next(key_cycle)
        logger.info(f"Using API key: {api_key}")
    try:
        response = get_gemini_models(api_key)
        logger.info("Successfully retrieved models list")
        return response
    except Exception as e:
        logger.error(f"Error listing models: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/v1/chat/completions")
@app.post("/hf/v1/chat/completions")
async def chat_completion(request: ChatRequest, authorization: str = Header(None)):
    await verify_authorization(authorization)
    async with key_lock:
        api_key = next(key_cycle)
        logger.info(f"Using API key: {api_key}")

    try:
        logger.info(f"Chat completion request - Model: {request.model}")
        client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
        response = client.chat.completions.create(
            model=request.model,
            messages=request.messages,
            temperature=request.temperature,
            stream=request.stream if hasattr(request, "stream") else False,
        )

        if hasattr(request, "stream") and request.stream:
            logger.info("Streaming response enabled")

            async def generate():
                for chunk in response:
                    yield f"data: {chunk.model_dump_json()}\n\n"

            return StreamingResponse(content=generate(), media_type="text/event-stream")

        logger.info("Chat completion successful")
        return response

    except Exception as e:
        logger.error(f"Error in chat completion: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/v1/embeddings")
@app.post("/hf/v1/embeddings")
async def embedding(request: EmbeddingRequest, authorization: str = Header(None)):
    await verify_authorization(authorization)
    async with key_lock:
        api_key = next(key_cycle)
        logger.info(f"Using API key: {api_key}")

    try:
        client = openai.OpenAI(api_key=api_key, base_url=config.settings.BASE_URL)
        response = client.embeddings.create(input=request.input, model=request.model)
        logger.info("Embedding successful")
        return response
    except Exception as e:
        logger.error(f"Error in embedding: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/health")
@app.get("/")
async def health_check():
    logger.info("Health check endpoint called")
    return {"status": "healthy"}


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)