File size: 9,070 Bytes
9842c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import cv2
import math
import numpy as np
import os
import os.path as osp
import random
import time
import torch
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
from torch.utils import data as data


@DATASET_REGISTRY.register()
class RealESRGANDataset(data.Dataset):
    """Dataset used for Real-ESRGAN model:
    Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.

    It loads gt (Ground-Truth) images, and augments them.
    It also generates blur kernels and sinc kernels for generating low-quality images.
    Note that the low-quality images are processed in tensors on GPUS for faster processing.

    Args:
        opt (dict): Config for train datasets. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            meta_info (str): Path for meta information file.
            io_backend (dict): IO backend type and other kwarg.
            use_hflip (bool): Use horizontal flips.
            use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
            Please see more options in the codes.
    """

    def __init__(self, opt):
        super(RealESRGANDataset, self).__init__()
        self.opt = opt
        self.file_client = None
        self.io_backend_opt = opt["io_backend"]
        self.gt_folder = opt["dataroot_gt"]

        # file client (lmdb io backend)
        if self.io_backend_opt["type"] == "lmdb":
            self.io_backend_opt["db_paths"] = [self.gt_folder]
            self.io_backend_opt["client_keys"] = ["gt"]
            if not self.gt_folder.endswith(".lmdb"):
                raise ValueError(
                    f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}"
                )
            with open(osp.join(self.gt_folder, "meta_info.txt")) as fin:
                self.paths = [line.split(".")[0] for line in fin]
        else:
            # disk backend with meta_info
            # Each line in the meta_info describes the relative path to an image
            with open(self.opt["meta_info"]) as fin:
                paths = [line.strip().split(" ")[0] for line in fin]
                self.paths = [os.path.join(self.gt_folder, v) for v in paths]

        # blur settings for the first degradation
        self.blur_kernel_size = opt["blur_kernel_size"]
        self.kernel_list = opt["kernel_list"]
        self.kernel_prob = opt["kernel_prob"]  # a list for each kernel probability
        self.blur_sigma = opt["blur_sigma"]
        self.betag_range = opt[
            "betag_range"
        ]  # betag used in generalized Gaussian blur kernels
        self.betap_range = opt["betap_range"]  # betap used in plateau blur kernels
        self.sinc_prob = opt["sinc_prob"]  # the probability for sinc filters

        # blur settings for the second degradation
        self.blur_kernel_size2 = opt["blur_kernel_size2"]
        self.kernel_list2 = opt["kernel_list2"]
        self.kernel_prob2 = opt["kernel_prob2"]
        self.blur_sigma2 = opt["blur_sigma2"]
        self.betag_range2 = opt["betag_range2"]
        self.betap_range2 = opt["betap_range2"]
        self.sinc_prob2 = opt["sinc_prob2"]

        # a final sinc filter
        self.final_sinc_prob = opt["final_sinc_prob"]

        self.kernel_range = [
            2 * v + 1 for v in range(3, 11)
        ]  # kernel size ranges from 7 to 21
        # TODO: kernel range is now hard-coded, should be in the configure file
        self.pulse_tensor = torch.zeros(
            21, 21
        ).float()  # convolving with pulse tensor brings no blurry effect
        self.pulse_tensor[10, 10] = 1

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(
                self.io_backend_opt.pop("type"), **self.io_backend_opt
            )

        # -------------------------------- Load gt images -------------------------------- #
        # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
        gt_path = self.paths[index]
        # avoid errors caused by high latency in reading files
        retry = 3
        while retry > 0:
            try:
                img_bytes = self.file_client.get(gt_path, "gt")
            except (IOError, OSError) as e:
                logger = get_root_logger()
                logger.warn(
                    f"File client error: {e}, remaining retry times: {retry - 1}"
                )
                # change another file to read
                index = random.randint(0, self.__len__())
                gt_path = self.paths[index]
                time.sleep(1)  # sleep 1s for occasional server congestion
            else:
                break
            finally:
                retry -= 1
        img_gt = imfrombytes(img_bytes, float32=True)

        # -------------------- Do augmentation for training: flip, rotation -------------------- #
        img_gt = augment(img_gt, self.opt["use_hflip"], self.opt["use_rot"])

        # crop or pad to 400
        # TODO: 400 is hard-coded. You may change it accordingly
        h, w = img_gt.shape[0:2]
        crop_pad_size = 400
        # pad
        if h < crop_pad_size or w < crop_pad_size:
            pad_h = max(0, crop_pad_size - h)
            pad_w = max(0, crop_pad_size - w)
            img_gt = cv2.copyMakeBorder(
                img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101
            )
        # crop
        if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
            h, w = img_gt.shape[0:2]
            # randomly choose top and left coordinates
            top = random.randint(0, h - crop_pad_size)
            left = random.randint(0, w - crop_pad_size)
            img_gt = img_gt[top : top + crop_pad_size, left : left + crop_pad_size, ...]

        # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt["sinc_prob"]:
            # this sinc filter setting is for kernels ranging from [7, 21]
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel = random_mixed_kernels(
                self.kernel_list,
                self.kernel_prob,
                kernel_size,
                self.blur_sigma,
                self.blur_sigma,
                [-math.pi, math.pi],
                self.betag_range,
                self.betap_range,
                noise_range=None,
            )
        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt["sinc_prob2"]:
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel2 = random_mixed_kernels(
                self.kernel_list2,
                self.kernel_prob2,
                kernel_size,
                self.blur_sigma2,
                self.blur_sigma2,
                [-math.pi, math.pi],
                self.betag_range2,
                self.betap_range2,
                noise_range=None,
            )

        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------------------- the final sinc kernel ------------------------------------- #
        if np.random.uniform() < self.opt["final_sinc_prob"]:
            kernel_size = random.choice(self.kernel_range)
            omega_c = np.random.uniform(np.pi / 3, np.pi)
            sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
            sinc_kernel = torch.FloatTensor(sinc_kernel)
        else:
            sinc_kernel = self.pulse_tensor

        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
        kernel = torch.FloatTensor(kernel)
        kernel2 = torch.FloatTensor(kernel2)

        return_d = {
            "gt": img_gt,
            "kernel1": kernel,
            "kernel2": kernel2,
            "sinc_kernel": sinc_kernel,
            "gt_path": gt_path,
        }
        return return_d

    def __len__(self):
        return len(self.paths)