PyABSA-APC / app.py
yangheng's picture
Update app.py
2f9b53a
raw
history blame
2.52 kB
# -*- coding: utf-8 -*-
# file: deploy_demo.py
# time: 2021/10/10
# author: yangheng <[email protected]>
# github: https://github.com/yangheng95
# Copyright (C) 2021. All Rights Reserved.
import gradio as gr
import pandas as pd
from pyabsa import APCCheckpointManager
sentiment_classifier = APCCheckpointManager.get_sentiment_classifier(checkpoint='fast_lsa_t_v2_Multilingual_acc_88.44_f1_82.66.zip',
auto_device=True # False means load model on CPU
)
def inference(text):
result = sentiment_classifier.infer(text=text,
print_result=True,
clear_input_samples=True)
result = pd.DataFrame({
'aspect': result['aspect'],
'sentiment': result['sentiment'],
'confidence': [round(c, 3) for c in result['confidence']],
'ref_sentiment': ['' if ref == '-999' else ref for ref in result['ref_sentiment']],
'is_correct': result['ref_check'],
})
return result
if __name__ == '__main__':
iface = gr.Interface(
fn=inference,
inputs=["text"],
examples=[
['前面老师[ASP]讲课[ASP]很好,后面的[ASP]分享课[ASP]过快了,显得很紧张,听不太清,一点都没有分享的意境,流水帐似的一带而过的味道。希望[ASP]分享课[ASP]改进一下,谢谢大家'],
['听了老师的[ASP]讲解[ASP]受益匪浅,老师的[ASP]讲解形式[ASP]唯美听之让人陶醉真正做到了寓教于乐。我喜欢这种[ASP]授课方式[ASP]'],
['I have had my [ASP]computer[ASP] for 2 weeks already and it [ASP]works[ASP] perfectly . !sent! Positive, Positive'],
['Strong build though which really adds to its [ASP]durability[ASP] .'], # !sent! Positive
['Use [ASP] aspect [ASP] to wrap target aspects. And you can use "!sent!" to tell the model the true sentiment'],
['This demo is trained on the laptop and restaurant and other review datasets from [ASP]ABSADatasets[ASP] (https://github.com/yangheng95/ABSADatasets)'],
['To fit on your data, please train the model on your own data, see the [ASP]PyABSA[ASP] (https://github.com/yangheng95/PyABSA)'],
],
outputs="dataframe",
title='Multilingual Aspect Sentiment Classification for Short Texts (powered by PyABSA)'
)
iface.launch()