yangheng's picture
update
e867ca2
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
RGB_BENCHMARK_COLS, PGB_BENCHMARK_COLS,
GUE_BENCHMARK_COLS, GB_BENCHMARK_COLS,
RGB_COLS, PGB_COLS, GUE_COLS, GB_COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumnRGB, AutoEvalColumnPGB,
AutoEvalColumnGUE, AutoEvalColumnGB,
ModelType,
Precision,
WeightType,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
# try:
# print(EVAL_REQUESTS_PATH)
# snapshot_download(
# repo_id=QUEUE_REPO,
# local_dir=EVAL_REQUESTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
# try:
# print(EVAL_RESULTS_PATH)
# snapshot_download(
# repo_id=RESULTS_REPO,
# local_dir=EVAL_RESULTS_PATH,
# repo_type="dataset",
# tqdm_class=None,
# etag_timeout=30,
# token=TOKEN,
# )
# except Exception:
# restart_space()
RGB_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH+"/RGB/", EVAL_REQUESTS_PATH+"/RGB/", RGB_COLS, RGB_BENCHMARK_COLS)
PGB_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH+"/PGB/", EVAL_REQUESTS_PATH+"/PGB/", PGB_COLS, PGB_BENCHMARK_COLS)
GUE_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH+"/GUE/", EVAL_REQUESTS_PATH+"/GUE/", GUE_COLS, GUE_BENCHMARK_COLS)
GB_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH+"/GB/", EVAL_REQUESTS_PATH+"/GB/", GB_COLS, GB_BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, AutoEvalColumn):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0,
max=2000,
label="Select the number of parameters (M)",
),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# ),
],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("RGB", elem_id="rgb-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(RGB_LEADERBOARD_DF, AutoEvalColumnRGB)
with gr.TabItem("PGB", elem_id="pgb-benchmark-tab-table", id=1):
leaderboard2 = init_leaderboard(PGB_LEADERBOARD_DF, AutoEvalColumnPGB)
with gr.TabItem("GUE", elem_id="gue-benchmark-tab-table", id=2):
leaderboard3 = init_leaderboard(GUE_LEADERBOARD_DF, AutoEvalColumnGUE)
with gr.TabItem("GB", elem_id="gb-benchmark-tab-table", id=3):
leaderboard4 = init_leaderboard(GB_LEADERBOARD_DF, AutoEvalColumnGB)
with gr.TabItem("πŸ“ About", elem_id="rgb-benchmark-tab-table", id=4):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="rgb-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()