File size: 6,509 Bytes
a3abdb2
 
 
 
 
 
28c500b
 
 
 
 
a3abdb2
 
 
 
28c500b
 
a3abdb2
 
 
 
 
 
28c500b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3abdb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5925058
a3abdb2
 
 
 
 
 
 
28c500b
a3abdb2
 
 
28c500b
 
 
163a551
28c500b
 
5fe3f71
28c500b
 
 
 
a3abdb2
 
 
28c500b
 
 
 
 
 
 
 
 
 
 
bbbc360
28c500b
 
 
a3abdb2
 
049cd53
a3abdb2
 
 
 
 
 
28c500b
 
 
 
 
 
 
 
a3abdb2
 
 
 
 
 
28c500b
a3abdb2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
try:
    import detectron2
except:
    import os
    os.system('pip install git+https://github.com/haya-alwarthan/detectron2.git')

try:
    import roboflow 
except:
    os.system('pip install git+https://github.com/roboflow-ai/roboflow-python.git')

import cv2
import gradio as gr
import numpy as np
import torch
import requests
import roboflow 
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode
from matplotlib import patches
import matplotlib.pyplot as plt
from  matplotlib.colors import to_rgba
import numpy as np
import cv2
import io

#Define the path to the pretrained weights of the model
keypoint_model_path= "https://huggingface.co/yahaoh/ddh-maskrcnn/resolve/main/keypoint_rcnn_binarymask.pth"

#configure roboflow project 


rf = roboflow.Roboflow(api_key="0uv4bY5n7Vluj0yRHOOm")
project = rf.workspace().project("ddh-seg")
model = project.version(1).model


#convert detectron format predictions to normal pairs
def convert_to_pairs(three):
  pairs=[element for i,element in enumerate(three)  if i%3!=2 ]
  return pairs




#function to output binary mask img
def segm_imf(prediction,rec_img):
  w= rec_img.shape[0]
  h=rec_img.shape[1]
  colors={"LOWER_BONE":"#fabee6","UPPER_BONE":"#96e7e6","MIDDLE_BONE":"#fffa5b"}
  # colors={"LOWER_BONE":(253,226,243),"UPPER_BONE":(173,228,219),"MIDDLE_BONE": (253,247,195)}
  figure, axes = plt.subplots(figsize =(h/100.0,w/100.0))
  for prediction in prediction["predictions"]:
    points = [[p["x"], p["y"]] for p in prediction["points"]]
    polygon = patches.Polygon(
              points, linewidth=2, edgecolor=colors[prediction["class"]],facecolor= to_rgba(colors[prediction["class"]],0.4)
          )
    axes.add_patch(polygon)
  plt.imshow(rec_img)
  plt.axis("off")
  plt.tight_layout()  
  canvas = plt.get_current_fig_manager().canvas
  canvas.draw()
  buf = io.BytesIO()
  canvas.print_png(buf)
  buf.seek(0)
  img_arr = np.frombuffer(buf.getvalue(), dtype='uint8')
  img = cv2.imdecode(img_arr, cv2.IMREAD_UNCHANGED)
  gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  return gray_image

def binary_cv2(rec_img,prediction):
  w= rec_img.shape[0]
  h=rec_img.shape[1]
  mask = np.zeros((w, h), dtype = np.float64)
  for prediction in prediction["predictions"]:
    points = [[p["x"], p["y"]] for p in prediction["points"]]
    cv2.fillPoly(mask, np.array([points]).astype(np.int32), color=(255, 0, 0))
  masked_gray = cv2.merge((mask,mask,mask))
  return masked_gray

def extend_line(p1, p2, distance=10000):
    diff = np.arctan2(p1[1] - p2[1], p1[0] - p2[0])
    p3_x = int(p1[0] + distance*np.cos(diff))
    p3_y = int(p1[1] + distance*np.sin(diff))
    p4_x = int(p1[0] - distance*np.cos(diff))
    p4_y = int(p1[1] - distance*np.sin(diff))
    return ((p3_x, p3_y), (p4_x, p4_y))

def visualize(image,pred):
  op_img=image.copy()
  pred=[int(i) for i in pred]
  (p1_left,p2_left)=extend_line((pred[6],pred[7]),(pred[4],pred[5]))
  (p1_h,p2_h)=extend_line((pred[4],pred[5]),(pred[2],pred[3]))
  (p1_right,p2_right)=extend_line((pred[2],pred[3]),(pred[0],pred[1]))
  op_img= cv2.line(op_img, p1_left, (pred[4],pred[5]),(152, 216, 170),1)
  op_img= cv2.line(op_img, p1_h, p2_h,(152, 216, 170),1)
  op_img= cv2.line(op_img, (pred[2],pred[3]), p2_right,(152, 216, 170),1)

  for i in range(0,7,2):
    op_img = cv2.circle(op_img, (round(pred[i]),round(pred[i+1])), int ((image.shape[0]+image.shape[1])/150), (255, 150, 128), -1)
  return op_img
  
  



#Keypoint RCNN MODEL AND META DATA SETUP
KEYPOINT_NAMES = ["RU","RD","LD","LU"]
KEYPOINT_FLIP_MAP = [
    ("RU", "LU"),
    ("RD", "LD"),
]
KEYPOINT_CONNECTION_RULES = [
    ("RU", "RD", (102, 204, 255)),
    ("RD", "LD", (51, 153, 255)),
    ("LU", "LD", (102, 0, 204)),
]
kp_meta=MetadataCatalog.get("ddh_jordan_kp_train")

kp_meta.set(keypoint_names =KEYPOINT_NAMES)
kp_meta.set(keypoint_flip_map =KEYPOINT_FLIP_MAP)
kp_meta.set(keypoint_connection_rules =KEYPOINT_CONNECTION_RULES)
kp_cfg = get_cfg()
kp_cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))
kp_cfg.DATALOADER.NUM_WORKERS = 2
kp_cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")  # Let training initialize from model zoo
kp_cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS=4
kp_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (landmarks). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)
kp_cfg.TEST.DETECTIONS_PER_IMAGE=1
kp_cfg.MODEL.WEIGHTS = keypoint_model_path
# kp_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7   # set a custom testing threshold


#check whether gpu is available 
if not torch.cuda.is_available():
    kp_cfg.MODEL.DEVICE = "cpu"


#Define the predictor of the model
kp_predictor = DefaultPredictor(kp_cfg)




def output_json(keypoints):
    landmarks_labels= ["RU","RD","LD","LU"]
    output= {}
    for i in range(len(landmarks_labels)):
        output[landmarks_labels[i].lower()]={'x':keypoints[2*i].item(), 'y':keypoints[2*i+1].item()}  
    return output



#Define a function to infernece from image
def predict_fn(img_path):
    #Read and tranform input image
    preds=model.predict(img_path).json()
    og_img=cv2.imread(img_path)
    img=binary_cv2(og_img,preds)
    img= np.array(img,dtype=np.uint8)
    outputs = kp_predictor(img)  # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
    print("outputs==".format(outputs["instances"].to("cpu")))
    p=np.asarray(outputs["instances"].to("cpu").pred_keypoints, dtype='float32')
    landmarks={}
    if p.size >0:
      p=p[0].reshape(-1)
      pairss=convert_to_pairs(p)
      landmarks=output_json(pairss)
      segm=segm_imf(preds,og_img)
      img= visualize(segm,pairss)
    return (img,landmarks)



inputs_image = [
    gr.components.Image(type="filepath", label="Upload an XRay Image of the Pelvis"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image")
] 
outputs_landmarks = [
    gr.components.JSON( label="Output Landmarks")
] 
outputs=[
     gr.components.Image(type="numpy", label="Output Image"),
     gr.components.JSON( label="Output Landmarks")

] 



gr.Interface(
    predict_fn,
    inputs=inputs_image,
    outputs=outputs,
    title="Coordinates of the Landmarks",
).launch()