Spaces:
Running
Running
xuelunshen
commited on
Commit
·
35867bd
1
Parent(s):
29ecebd
update: gim
Browse files- common/utils.py +6 -10
- datasets/gim/__init__.py +0 -0
- hloc/match_dense.py +2 -9
- hloc/matchers/gim.py +36 -19
common/utils.py
CHANGED
@@ -14,7 +14,7 @@ from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches
|
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
DEFAULT_SETTING_THRESHOLD = 0.1
|
17 |
-
DEFAULT_SETTING_MAX_FEATURES =
|
18 |
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
19 |
DEFAULT_ENABLE_RANSAC = True
|
20 |
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
|
@@ -44,12 +44,7 @@ def gen_examples():
|
|
44 |
"gim",
|
45 |
"gim",
|
46 |
"gim",
|
47 |
-
"
|
48 |
-
"loftr",
|
49 |
-
"disk",
|
50 |
-
"d2net",
|
51 |
-
"superpoint+superglue",
|
52 |
-
"disk+dualsoftmax",
|
53 |
]
|
54 |
|
55 |
def gen_images_pairs(path: str, count: int = 5):
|
@@ -67,8 +62,9 @@ def gen_examples():
|
|
67 |
pairs = gen_images_pairs(path, len(example_matchers))
|
68 |
gim_pairs = [('datasets/gim/0a.png', 'datasets/gim/0b.png'),
|
69 |
('datasets/gim/1a.png', 'datasets/gim/1b.png'),
|
70 |
-
('datasets/gim/2a.png', 'datasets/gim/2b.png')
|
71 |
-
|
|
|
72 |
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
|
73 |
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
|
74 |
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
|
@@ -77,7 +73,7 @@ def gen_examples():
|
|
77 |
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
|
78 |
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
|
79 |
input_lists = []
|
80 |
-
for pair, mt in zip(
|
81 |
input_lists.append(
|
82 |
[
|
83 |
pair[0],
|
|
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
DEFAULT_SETTING_THRESHOLD = 0.1
|
17 |
+
DEFAULT_SETTING_MAX_FEATURES = 4096
|
18 |
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
19 |
DEFAULT_ENABLE_RANSAC = True
|
20 |
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
|
|
|
44 |
"gim",
|
45 |
"gim",
|
46 |
"gim",
|
47 |
+
"gim",
|
|
|
|
|
|
|
|
|
|
|
48 |
]
|
49 |
|
50 |
def gen_images_pairs(path: str, count: int = 5):
|
|
|
62 |
pairs = gen_images_pairs(path, len(example_matchers))
|
63 |
gim_pairs = [('datasets/gim/0a.png', 'datasets/gim/0b.png'),
|
64 |
('datasets/gim/1a.png', 'datasets/gim/1b.png'),
|
65 |
+
('datasets/gim/2a.png', 'datasets/gim/2b.png'),
|
66 |
+
('datasets/gim/3a.png', 'datasets/gim/3b.png')]
|
67 |
+
pairs = gim_pairs
|
68 |
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
|
69 |
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
|
70 |
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
|
|
|
73 |
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
|
74 |
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
|
75 |
input_lists = []
|
76 |
+
for pair, mt in zip(gim_pairs, example_matchers):
|
77 |
input_lists.append(
|
78 |
[
|
79 |
pair[0],
|
datasets/gim/__init__.py
DELETED
File without changes
|
hloc/match_dense.py
CHANGED
@@ -14,16 +14,11 @@ confs = {
|
|
14 |
"model": {
|
15 |
"name": "gim",
|
16 |
"weights": "gim_dkm_100h.ckpt",
|
17 |
-
"max_keypoints":
|
18 |
"match_threshold": 0.2,
|
19 |
},
|
20 |
"preprocessing": {
|
21 |
"grayscale": False,
|
22 |
-
"force_resize": True,
|
23 |
-
"resize_max": 1024,
|
24 |
-
"width": 80,
|
25 |
-
"height": 60,
|
26 |
-
"dfactor": 8,
|
27 |
},
|
28 |
},
|
29 |
"loftr": {
|
@@ -279,12 +274,10 @@ def match(model, path_0, path_1, conf):
|
|
279 |
def match_images(model, image_0, image_1, conf, device="cpu"):
|
280 |
default_conf = {
|
281 |
"grayscale": True,
|
282 |
-
"resize_max":
|
283 |
"dfactor": 8,
|
284 |
"cache_images": False,
|
285 |
"force_resize": False,
|
286 |
-
"width": 320,
|
287 |
-
"height": 240,
|
288 |
}
|
289 |
|
290 |
def preprocess(image: np.ndarray):
|
|
|
14 |
"model": {
|
15 |
"name": "gim",
|
16 |
"weights": "gim_dkm_100h.ckpt",
|
17 |
+
"max_keypoints": 4096,
|
18 |
"match_threshold": 0.2,
|
19 |
},
|
20 |
"preprocessing": {
|
21 |
"grayscale": False,
|
|
|
|
|
|
|
|
|
|
|
22 |
},
|
23 |
},
|
24 |
"loftr": {
|
|
|
274 |
def match_images(model, image_0, image_1, conf, device="cpu"):
|
275 |
default_conf = {
|
276 |
"grayscale": True,
|
277 |
+
"resize_max": 8192,
|
278 |
"dfactor": 8,
|
279 |
"cache_images": False,
|
280 |
"force_resize": False,
|
|
|
|
|
281 |
}
|
282 |
|
283 |
def preprocess(image: np.ndarray):
|
hloc/matchers/gim.py
CHANGED
@@ -72,21 +72,38 @@ class GIM(BaseModel):
|
|
72 |
# )
|
73 |
|
74 |
image0, image1 = data['image0'], data['image1']
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
aspect_ratio = 896 / 672
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
dense_matches, dense_certainty = self.net.match(image0, image1)
|
89 |
-
sparse_matches, mconf = self.net.sample(dense_matches, dense_certainty,
|
90 |
height0, width0 = image0.shape[-2:]
|
91 |
height1, width1 = image1.shape[-2:]
|
92 |
kpts0 = sparse_matches[:, :2]
|
@@ -95,17 +112,17 @@ class GIM(BaseModel):
|
|
95 |
kpts1 = torch.stack((width1 * (kpts1[:, 0] + 1) / 2, height1 * (kpts1[:, 1] + 1) / 2), dim=-1, )
|
96 |
b_ids, i_ids = torch.where(mconf[None])
|
97 |
# before padding
|
98 |
-
kpts0 -= kpts0.new_tensor((
|
99 |
-
kpts1 -= kpts1.new_tensor((
|
100 |
mask = (kpts0[:, 0] > 0) & \
|
101 |
(kpts0[:, 1] > 0) & \
|
102 |
(kpts1[:, 0] > 0) & \
|
103 |
(kpts1[:, 1] > 0)
|
104 |
mask = mask & \
|
105 |
-
(kpts0[:, 0] <= (
|
106 |
-
(kpts1[:, 0] <= (
|
107 |
-
(kpts0[:, 1] <= (
|
108 |
-
(kpts1[:, 1] <= (
|
109 |
pred = {
|
110 |
'keypoints0': kpts0[i_ids],
|
111 |
'keypoints1': kpts1[i_ids],
|
|
|
72 |
# )
|
73 |
|
74 |
image0, image1 = data['image0'], data['image1']
|
75 |
+
print('1.', 'image0', image0.shape, 'image1', image1.shape)
|
76 |
+
orig_width0 = image0.shape[3]
|
77 |
+
orig_height0 = image0.shape[2]
|
78 |
+
orig_width1 = image1.shape[3]
|
79 |
+
orig_height1 = image1.shape[2]
|
80 |
aspect_ratio = 896 / 672
|
81 |
+
|
82 |
+
new_width0 = max(orig_width0, int(orig_height0 * aspect_ratio))
|
83 |
+
new_height0 = max(orig_height0, int(orig_width0 / aspect_ratio))
|
84 |
+
new_width1 = max(orig_width1, int(orig_height1 * aspect_ratio))
|
85 |
+
new_height1 = max(orig_height1, int(orig_width1 / aspect_ratio))
|
86 |
+
|
87 |
+
new_width = max(new_width0, new_width1)
|
88 |
+
new_height = max(new_height0, new_height1)
|
89 |
+
|
90 |
+
pad_height0 = new_height - orig_height0
|
91 |
+
pad_width0 = new_width - orig_width0
|
92 |
+
pad_height1 = new_height - orig_height1
|
93 |
+
pad_width1 = new_width - orig_width1
|
94 |
+
pad_top0 = pad_height0 // 2
|
95 |
+
pad_bottom0 = pad_height0 - pad_top0
|
96 |
+
pad_left0 = pad_width0 // 2
|
97 |
+
pad_right0 = pad_width0 - pad_left0
|
98 |
+
pad_top1 = pad_height1 // 2
|
99 |
+
pad_bottom1 = pad_height1 - pad_top1
|
100 |
+
pad_left1 = pad_width1 // 2
|
101 |
+
pad_right1 = pad_width1 - pad_left1
|
102 |
+
image0 = torch.nn.functional.pad(image0, (pad_left0, pad_right0, pad_top0, pad_bottom0))
|
103 |
+
image1 = torch.nn.functional.pad(image1, (pad_left1, pad_right1, pad_top1, pad_bottom1))
|
104 |
+
print('2.', 'image0', image0.shape, 'image1', image1.shape)
|
105 |
dense_matches, dense_certainty = self.net.match(image0, image1)
|
106 |
+
sparse_matches, mconf = self.net.sample(dense_matches, dense_certainty, self.conf["max_keypoints"])
|
107 |
height0, width0 = image0.shape[-2:]
|
108 |
height1, width1 = image1.shape[-2:]
|
109 |
kpts0 = sparse_matches[:, :2]
|
|
|
112 |
kpts1 = torch.stack((width1 * (kpts1[:, 0] + 1) / 2, height1 * (kpts1[:, 1] + 1) / 2), dim=-1, )
|
113 |
b_ids, i_ids = torch.where(mconf[None])
|
114 |
# before padding
|
115 |
+
kpts0 -= kpts0.new_tensor((pad_left0, pad_top0))[None]
|
116 |
+
kpts1 -= kpts1.new_tensor((pad_left1, pad_top1))[None]
|
117 |
mask = (kpts0[:, 0] > 0) & \
|
118 |
(kpts0[:, 1] > 0) & \
|
119 |
(kpts1[:, 0] > 0) & \
|
120 |
(kpts1[:, 1] > 0)
|
121 |
mask = mask & \
|
122 |
+
(kpts0[:, 0] <= (orig_width0 - 1)) & \
|
123 |
+
(kpts1[:, 0] <= (orig_width1 - 1)) & \
|
124 |
+
(kpts0[:, 1] <= (orig_height0 - 1)) & \
|
125 |
+
(kpts1[:, 1] <= (orig_height1 - 1))
|
126 |
pred = {
|
127 |
'keypoints0': kpts0[i_ids],
|
128 |
'keypoints1': kpts1[i_ids],
|