Spaces:
Running
Running
update
Browse files- app.py +5 -4
- vocab/gpt_4/__init__.py +42 -0
- vocab/gpt_neox_chinese_v1/20B_tokenizer_chinese.mock.json +0 -0
- vocab/gpt_neox_chinese_v1/README.md +52 -0
- vocab/gpt_neox_chinese_v1/mock.py +17 -0
- vocab/gpt_neox_chinese_v1/tokenizer/__init__.py +16 -0
- vocab/gpt_neox_chinese_v1/tokenizer/gpt2_tokenization.py +368 -0
- vocab/gpt_neox_chinese_v1/tokenizer/tokenizer.py +402 -0
- vocab/gpt_neox_chinese_v1/tokenizer/train_tokenizer.py +126 -0
app.py
CHANGED
@@ -15,7 +15,8 @@
|
|
15 |
- 英文 utf-8编码
|
16 |
- 词典支持下载
|
17 |
- 中文字词统计,是否要包括 _ G 等字符
|
18 |
-
|
|
|
19 |
|
20 |
|
21 |
plots
|
@@ -137,7 +138,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
137 |
# )
|
138 |
# https://www.onlinewebfonts.com/icon/418591
|
139 |
gr.Image("images/VS.svg", scale=1, show_label=False,
|
140 |
-
show_download_button=
|
141 |
show_share_button=False)
|
142 |
with gr.Column(scale=6):
|
143 |
with gr.Group():
|
@@ -154,9 +155,9 @@ with gr.Blocks(css="style.css") as demo:
|
|
154 |
lines=1,
|
155 |
elem_classes="statistics"
|
156 |
)
|
157 |
-
stats_zh_token_size_2 = gr.TextArea(
|
158 |
value=default_stats_zh_token_size_2,
|
159 |
-
label="ZH char/word",
|
160 |
lines=1,
|
161 |
elem_classes="statistics"
|
162 |
)
|
|
|
15 |
- 英文 utf-8编码
|
16 |
- 词典支持下载
|
17 |
- 中文字词统计,是否要包括 _ G 等字符
|
18 |
+
- baichuan的单字数量怎么两万多个?
|
19 |
+
- gpt4
|
20 |
|
21 |
|
22 |
plots
|
|
|
138 |
# )
|
139 |
# https://www.onlinewebfonts.com/icon/418591
|
140 |
gr.Image("images/VS.svg", scale=1, show_label=False,
|
141 |
+
show_download_button=True, container=False,
|
142 |
show_share_button=False)
|
143 |
with gr.Column(scale=6):
|
144 |
with gr.Group():
|
|
|
155 |
lines=1,
|
156 |
elem_classes="statistics"
|
157 |
)
|
158 |
+
stats_zh_token_size_2 = gr.TextArea(
|
159 |
value=default_stats_zh_token_size_2,
|
160 |
+
label="ZH char/word", # 中文字/词
|
161 |
lines=1,
|
162 |
elem_classes="statistics"
|
163 |
)
|
vocab/gpt_4/__init__.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import tiktoken
|
4 |
+
from tiktoken import Encoding
|
5 |
+
|
6 |
+
tokenizer = tiktoken.encoding_for_model('gpt-4')
|
7 |
+
tokenizer.vocab_size = tokenizer.n_vocab
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def decode(self, tokens, errors="replace"):
|
12 |
+
# def decode(self, tokens: list[int], errors: str = "replace") -> str:
|
13 |
+
try:
|
14 |
+
decode_str = self._core_bpe.decode_bytes(tokens).decode("utf-8", errors=errors)
|
15 |
+
except:
|
16 |
+
decode_str = "null"
|
17 |
+
return decode_str
|
18 |
+
|
19 |
+
def convert_ids_to_tokens(self, tokens):
|
20 |
+
return tokenizer.decode_tokens_bytes(tokens)
|
21 |
+
|
22 |
+
def get_vocab(self):
|
23 |
+
"""Returns vocab as a dict"""
|
24 |
+
vocab = {}
|
25 |
+
for i in range(self.vocab_size):
|
26 |
+
try:
|
27 |
+
token_byte = self.convert_ids_to_tokens([i])[0]
|
28 |
+
token_str = token_byte.decode("utf-8")
|
29 |
+
vocab[token_str] = i
|
30 |
+
except KeyError:
|
31 |
+
print("gpt_35_turbo decode KeyError", i)
|
32 |
+
except UnicodeDecodeError:
|
33 |
+
print("gpt_35_turbo decode UnicodeDecodeError", i, str(token_byte))
|
34 |
+
# vocab.update(self.added_tokens_encoder)
|
35 |
+
return vocab
|
36 |
+
|
37 |
+
|
38 |
+
Encoding.decode = decode
|
39 |
+
Encoding.convert_ids_to_tokens = convert_ids_to_tokens
|
40 |
+
Encoding.get_vocab = get_vocab
|
41 |
+
|
42 |
+
|
vocab/gpt_neox_chinese_v1/20B_tokenizer_chinese.mock.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab/gpt_neox_chinese_v1/README.md
CHANGED
@@ -10,3 +10,55 @@ Vocab size: 54634
|
|
10 |
|
11 |
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py
|
12 |
|
13 |
+
|
14 |
+
## 20B
|
15 |
+
|
16 |
+
[configs/20B.yml](https://github.com/EleutherAI/gpt-neox/blob/main/configs/20B.yml#L7)
|
17 |
+
```
|
18 |
+
"vocab-file": "./20B_checkpoints/20B_tokenizer.json",
|
19 |
+
```
|
20 |
+
|
21 |
+
Vocab size: 50277
|
22 |
+
self.padded_vocab_size = 50304
|
23 |
+
|
24 |
+
|
25 |
+
padded vocab (size: 50277) with 27 dummy tokens (new size: 50304)
|
26 |
+
|
27 |
+
## 词典
|
28 |
+
|
29 |
+
见 convert_vocab_to_txt.py
|
30 |
+
|
31 |
+
```
|
32 |
+
{"id": 13609, "token": "\u00e4\u00b8\u0143", "token_decode": "\u4e2d"} 中
|
33 |
+
|
34 |
+
# 多个符号拼接在一起的
|
35 |
+
{"id": 13663, "token": ".*]{}", "token_decode": ".*]{}"} .*]{}
|
36 |
+
|
37 |
+
# ss
|
38 |
+
|
39 |
+
```
|
40 |
+
|
41 |
+
|
42 |
+
## 中文支持
|
43 |
+
|
44 |
+
基本没有OOV。
|
45 |
+
|
46 |
+
gpt-neox是在800G英文数据集上训练的,为啥词典支持中文?因为是byte-level BPE
|
47 |
+
|
48 |
+
```
|
49 |
+
丁 [3218, 212]
|
50 |
+
七 [3218, 214]
|
51 |
+
万 [3218, 218]
|
52 |
+
诀 [11894, 211]
|
53 |
+
证 [11894, 212]
|
54 |
+
```
|
55 |
+
|
56 |
+
|
57 |
+
编码长度统计: Counter({2: 4190, 3: 1295, 1: 285})
|
58 |
+
平均编码长度: 2.1750433275563257
|
59 |
+
|
60 |
+
|
61 |
+
## ss
|
62 |
+
|
63 |
+
|
64 |
+
|
vocab/gpt_neox_chinese_v1/mock.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
|
4 |
+
input_path = "20B_tokenizer_chinese.json"
|
5 |
+
|
6 |
+
tokenizer = json.load(open(input_path, "r", encoding="utf-8"))
|
7 |
+
|
8 |
+
vocab = tokenizer["model"]["vocab"]
|
9 |
+
|
10 |
+
|
11 |
+
for k, v in copy.deepcopy(vocab).items():
|
12 |
+
vocab[str(v)] = v
|
13 |
+
vocab.pop(k)
|
14 |
+
|
15 |
+
out_path = input_path.replace(".json", ".mock.json")
|
16 |
+
with open(out_path, "w", encoding="utf-8") as f_out:
|
17 |
+
f_out.write(json.dumps(tokenizer, ensure_ascii=False, indent=2))
|
vocab/gpt_neox_chinese_v1/tokenizer/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from .tokenizer import build_tokenizer
|
vocab/gpt_neox_chinese_v1/tokenizer/gpt2_tokenization.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, EleutherAI
|
2 |
+
# This file is based on code by the authors denoted below and has been modified from its original version.
|
3 |
+
#
|
4 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for OpenAI GPT."""
|
19 |
+
|
20 |
+
from __future__ import absolute_import, division, print_function, unicode_literals
|
21 |
+
|
22 |
+
import sys
|
23 |
+
import json
|
24 |
+
import logging
|
25 |
+
import os
|
26 |
+
import regex as re
|
27 |
+
from io import open
|
28 |
+
|
29 |
+
from functools import lru_cache
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
35 |
+
"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
|
36 |
+
}
|
37 |
+
PRETRAINED_MERGES_ARCHIVE_MAP = {
|
38 |
+
"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
|
39 |
+
}
|
40 |
+
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
41 |
+
"gpt2": 1024,
|
42 |
+
}
|
43 |
+
|
44 |
+
VOCAB_NAME = "vocab.json"
|
45 |
+
MERGES_NAME = "merges.txt"
|
46 |
+
SPECIAL_TOKENS_NAME = "special_tokens.txt"
|
47 |
+
|
48 |
+
|
49 |
+
@lru_cache()
|
50 |
+
def bytes_to_unicode():
|
51 |
+
"""
|
52 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
53 |
+
The reversible bpe codes work on unicode strings.
|
54 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
55 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
56 |
+
This is a significant percentage of your normal, say, 32K bpe vocab.
|
57 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
58 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
59 |
+
"""
|
60 |
+
_chr = unichr if sys.version_info[0] == 2 else chr
|
61 |
+
bs = (
|
62 |
+
list(range(ord("!"), ord("~") + 1))
|
63 |
+
+ list(range(ord("¡"), ord("¬") + 1))
|
64 |
+
+ list(range(ord("®"), ord("ÿ") + 1))
|
65 |
+
)
|
66 |
+
cs = bs[:]
|
67 |
+
n = 0
|
68 |
+
for b in range(2**8):
|
69 |
+
if b not in bs:
|
70 |
+
bs.append(b)
|
71 |
+
cs.append(2**8 + n)
|
72 |
+
n += 1
|
73 |
+
cs = [_chr(n) for n in cs]
|
74 |
+
return dict(zip(bs, cs))
|
75 |
+
|
76 |
+
|
77 |
+
def get_pairs(word):
|
78 |
+
"""Return set of symbol pairs in a word.
|
79 |
+
|
80 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
81 |
+
"""
|
82 |
+
pairs = set()
|
83 |
+
prev_char = word[0]
|
84 |
+
for char in word[1:]:
|
85 |
+
pairs.add((prev_char, char))
|
86 |
+
prev_char = char
|
87 |
+
return pairs
|
88 |
+
|
89 |
+
|
90 |
+
class GPT2Tokenizer(object):
|
91 |
+
"""
|
92 |
+
GPT-2 BPE tokenizer. Peculiarities:
|
93 |
+
- Byte-level BPE
|
94 |
+
"""
|
95 |
+
|
96 |
+
@classmethod
|
97 |
+
def from_pretrained(
|
98 |
+
cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs
|
99 |
+
):
|
100 |
+
"""
|
101 |
+
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
102 |
+
Download and cache the pre-trained model file if needed.
|
103 |
+
"""
|
104 |
+
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
105 |
+
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
106 |
+
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
|
107 |
+
special_tokens_file = None
|
108 |
+
else:
|
109 |
+
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
|
110 |
+
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
|
111 |
+
special_tokens_file = os.path.join(
|
112 |
+
pretrained_model_name_or_path, SPECIAL_TOKENS_NAME
|
113 |
+
)
|
114 |
+
if not os.path.exists(special_tokens_file):
|
115 |
+
special_tokens_file = None
|
116 |
+
else:
|
117 |
+
logger.info(
|
118 |
+
"loading special tokens file {}".format(special_tokens_file)
|
119 |
+
)
|
120 |
+
# redirect to the cache, if necessary
|
121 |
+
try:
|
122 |
+
from .file_utils import cached_path
|
123 |
+
|
124 |
+
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
125 |
+
resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
|
126 |
+
except EnvironmentError:
|
127 |
+
logger.error(
|
128 |
+
"Model name '{}' was not found in model name list ({}). "
|
129 |
+
"We assumed '{}' was a path or url but couldn't find files {} and {} "
|
130 |
+
"at this path or url.".format(
|
131 |
+
pretrained_model_name_or_path,
|
132 |
+
", ".join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
133 |
+
pretrained_model_name_or_path,
|
134 |
+
vocab_file,
|
135 |
+
merges_file,
|
136 |
+
)
|
137 |
+
)
|
138 |
+
return None
|
139 |
+
if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
|
140 |
+
logger.info("loading vocabulary file {}".format(vocab_file))
|
141 |
+
logger.info("loading merges file {}".format(merges_file))
|
142 |
+
else:
|
143 |
+
logger.info(
|
144 |
+
"loading vocabulary file {} from cache at {}".format(
|
145 |
+
vocab_file, resolved_vocab_file
|
146 |
+
)
|
147 |
+
)
|
148 |
+
logger.info(
|
149 |
+
"loading merges file {} from cache at {}".format(
|
150 |
+
merges_file, resolved_merges_file
|
151 |
+
)
|
152 |
+
)
|
153 |
+
if (
|
154 |
+
pretrained_model_name_or_path
|
155 |
+
in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP
|
156 |
+
):
|
157 |
+
# if we're using a pretrained model, ensure the tokenizer won't index sequences longer
|
158 |
+
# than the number of positional embeddings
|
159 |
+
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[
|
160 |
+
pretrained_model_name_or_path
|
161 |
+
]
|
162 |
+
kwargs["max_len"] = min(kwargs.get("max_len", int(1e12)), max_len)
|
163 |
+
# Instantiate tokenizer.
|
164 |
+
if special_tokens_file and "special_tokens" not in kwargs:
|
165 |
+
special_tokens = (
|
166 |
+
open(special_tokens_file, encoding="utf-8").read().split("\n")[:-1]
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
special_tokens = kwargs.pop("special_tokens", [])
|
170 |
+
tokenizer = cls(
|
171 |
+
resolved_vocab_file,
|
172 |
+
resolved_merges_file,
|
173 |
+
special_tokens=special_tokens,
|
174 |
+
*inputs,
|
175 |
+
**kwargs
|
176 |
+
)
|
177 |
+
return tokenizer
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
vocab_file,
|
182 |
+
merges_file,
|
183 |
+
errors="replace",
|
184 |
+
special_tokens=None,
|
185 |
+
max_len=None,
|
186 |
+
):
|
187 |
+
self.max_len = max_len if max_len is not None else int(1e12)
|
188 |
+
self.encoder = json.load(open(vocab_file))
|
189 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
190 |
+
self.errors = errors # how to handle errors in decoding
|
191 |
+
self.byte_encoder = bytes_to_unicode()
|
192 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
193 |
+
bpe_data = open(merges_file, encoding="utf-8").read().split("\n")[1:-1]
|
194 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
|
195 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
196 |
+
|
197 |
+
# Should haved added re.IGNORECASE so BPE merges can happen for
|
198 |
+
# capitalized versions of contractions
|
199 |
+
self.pat = re.compile(
|
200 |
+
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
201 |
+
)
|
202 |
+
|
203 |
+
self.special_tokens = {}
|
204 |
+
self.special_tokens_decoder = {}
|
205 |
+
self.set_special_tokens(special_tokens)
|
206 |
+
|
207 |
+
def __len__(self):
|
208 |
+
return len(self.encoder) + len(self.special_tokens)
|
209 |
+
|
210 |
+
def set_special_tokens(self, special_tokens):
|
211 |
+
"""Add a list of additional tokens to the encoder.
|
212 |
+
The additional tokens are indexed starting from the last index of the
|
213 |
+
current vocabulary in the order of the `special_tokens` list.
|
214 |
+
"""
|
215 |
+
if not special_tokens:
|
216 |
+
self.special_tokens = {}
|
217 |
+
self.special_tokens_decoder = {}
|
218 |
+
return
|
219 |
+
self.special_tokens = dict(
|
220 |
+
(tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens)
|
221 |
+
)
|
222 |
+
self.special_tokens_decoder = {v: k for k, v in self.special_tokens.items()}
|
223 |
+
logger.info("Special tokens {}".format(self.special_tokens))
|
224 |
+
|
225 |
+
@lru_cache(maxsize=131072)
|
226 |
+
def bpe(self, token):
|
227 |
+
word = tuple(token)
|
228 |
+
pairs = get_pairs(word)
|
229 |
+
|
230 |
+
if not pairs:
|
231 |
+
return token
|
232 |
+
|
233 |
+
while True:
|
234 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
235 |
+
if bigram not in self.bpe_ranks:
|
236 |
+
break
|
237 |
+
first, second = bigram
|
238 |
+
new_word = []
|
239 |
+
i = 0
|
240 |
+
while i < len(word):
|
241 |
+
try:
|
242 |
+
j = word.index(first, i)
|
243 |
+
new_word.extend(word[i:j])
|
244 |
+
i = j
|
245 |
+
except BaseException:
|
246 |
+
new_word.extend(word[i:])
|
247 |
+
break
|
248 |
+
|
249 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
250 |
+
new_word.append(first + second)
|
251 |
+
i += 2
|
252 |
+
else:
|
253 |
+
new_word.append(word[i])
|
254 |
+
i += 1
|
255 |
+
new_word = tuple(new_word)
|
256 |
+
word = new_word
|
257 |
+
if len(word) == 1:
|
258 |
+
break
|
259 |
+
else:
|
260 |
+
pairs = get_pairs(word)
|
261 |
+
word = " ".join(word)
|
262 |
+
return word
|
263 |
+
|
264 |
+
def tokenize(self, text):
|
265 |
+
"""Tokenize a string."""
|
266 |
+
bpe_tokens = []
|
267 |
+
for token in re.findall(self.pat, text):
|
268 |
+
if sys.version_info[0] == 2:
|
269 |
+
token = "".join(self.byte_encoder[ord(b)] for b in token)
|
270 |
+
else:
|
271 |
+
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
272 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
273 |
+
return bpe_tokens
|
274 |
+
|
275 |
+
def convert_tokens_to_ids(self, tokens):
|
276 |
+
"""Converts a sequence of tokens into ids using the vocab."""
|
277 |
+
ids = []
|
278 |
+
if isinstance(tokens, str) or (
|
279 |
+
sys.version_info[0] == 2 and isinstance(tokens, unicode)
|
280 |
+
):
|
281 |
+
if tokens in self.special_tokens:
|
282 |
+
return self.special_tokens[tokens]
|
283 |
+
else:
|
284 |
+
return self.encoder.get(tokens, 0)
|
285 |
+
for token in tokens:
|
286 |
+
if token in self.special_tokens:
|
287 |
+
ids.append(self.special_tokens[token])
|
288 |
+
else:
|
289 |
+
ids.append(self.encoder.get(token, 0))
|
290 |
+
if len(ids) > self.max_len:
|
291 |
+
logger.warning(
|
292 |
+
"Token indices sequence length is longer than the specified maximum "
|
293 |
+
" sequence length for this OpenAI GPT model ({} > {}). Running this"
|
294 |
+
" sequence through the model will result in indexing errors".format(
|
295 |
+
len(ids), self.max_len
|
296 |
+
)
|
297 |
+
)
|
298 |
+
return ids
|
299 |
+
|
300 |
+
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
301 |
+
"""Converts a sequence of ids in BPE tokens using the vocab."""
|
302 |
+
tokens = []
|
303 |
+
for i in ids:
|
304 |
+
if i in self.special_tokens_decoder:
|
305 |
+
if not skip_special_tokens:
|
306 |
+
tokens.append(self.special_tokens_decoder[i])
|
307 |
+
else:
|
308 |
+
tokens.append(self.decoder[i])
|
309 |
+
return tokens
|
310 |
+
|
311 |
+
def encode(self, text):
|
312 |
+
return self.convert_tokens_to_ids(self.tokenize(text))
|
313 |
+
|
314 |
+
def decode(self, tokens):
|
315 |
+
text = "".join([self.decoder[token] for token in tokens])
|
316 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode(
|
317 |
+
"utf-8", errors=self.errors
|
318 |
+
)
|
319 |
+
return text
|
320 |
+
|
321 |
+
def save_vocabulary(self, vocab_path):
|
322 |
+
"""Save the tokenizer vocabulary and merge files to a directory."""
|
323 |
+
if not os.path.isdir(vocab_path):
|
324 |
+
logger.error(
|
325 |
+
"Vocabulary path ({}) should be a directory".format(vocab_path)
|
326 |
+
)
|
327 |
+
return
|
328 |
+
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
329 |
+
merge_file = os.path.join(vocab_path, MERGES_NAME)
|
330 |
+
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)
|
331 |
+
|
332 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
333 |
+
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
334 |
+
|
335 |
+
index = 0
|
336 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
337 |
+
writer.write("#version: 0.2\n")
|
338 |
+
for bpe_tokens, token_index in sorted(
|
339 |
+
self.bpe_ranks.items(), key=lambda kv: kv[1]
|
340 |
+
):
|
341 |
+
if index != token_index:
|
342 |
+
logger.warning(
|
343 |
+
"Saving vocabulary to {}: BPE merge indices are not consecutive."
|
344 |
+
" Please check that the tokenizer is not corrupted!".format(
|
345 |
+
merge_file
|
346 |
+
)
|
347 |
+
)
|
348 |
+
index = token_index
|
349 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
350 |
+
index += 1
|
351 |
+
|
352 |
+
index = len(self.encoder)
|
353 |
+
with open(special_tokens_file, "w", encoding="utf-8") as writer:
|
354 |
+
for token, token_index in sorted(
|
355 |
+
self.special_tokens.items(), key=lambda kv: kv[1]
|
356 |
+
):
|
357 |
+
if index != token_index:
|
358 |
+
logger.warning(
|
359 |
+
"Saving special tokens vocabulary to {}: BPE indices are not consecutive."
|
360 |
+
" Please check that the tokenizer is not corrupted!".format(
|
361 |
+
special_tokens_file
|
362 |
+
)
|
363 |
+
)
|
364 |
+
index = token_index
|
365 |
+
writer.write(token + "\n")
|
366 |
+
index += 1
|
367 |
+
|
368 |
+
return vocab_file, merge_file, special_tokens_file
|
vocab/gpt_neox_chinese_v1/tokenizer/tokenizer.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, EleutherAI
|
2 |
+
# This file is based on code by the authors denoted below and has been modified from its original version.
|
3 |
+
#
|
4 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Megatron tokenizers."""
|
19 |
+
|
20 |
+
from abc import ABC
|
21 |
+
from abc import abstractmethod
|
22 |
+
|
23 |
+
from tokenizers import Tokenizer
|
24 |
+
from transformers import GPT2Tokenizer, GPT2TokenizerFast
|
25 |
+
import numpy as np
|
26 |
+
import sentencepiece as spm
|
27 |
+
from typing import List, Union
|
28 |
+
from .gpt2_tokenization import GPT2Tokenizer
|
29 |
+
|
30 |
+
|
31 |
+
def build_tokenizer(args):
|
32 |
+
"""Initialize tokenizer."""
|
33 |
+
if args.rank == 0:
|
34 |
+
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
|
35 |
+
|
36 |
+
# Select and instantiate the tokenizer.
|
37 |
+
if args.tokenizer_type.lower() == "GPT2BPETokenizer".lower():
|
38 |
+
assert args.vocab_file is not None
|
39 |
+
assert args.merge_file is not None
|
40 |
+
tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
|
41 |
+
elif args.tokenizer_type.lower() == "SPMTokenizer".lower():
|
42 |
+
assert args.vocab_file is not None
|
43 |
+
tokenizer = SentencePieceTokenizer(args.vocab_file)
|
44 |
+
elif args.tokenizer_type.lower() == "HFTokenizer".lower():
|
45 |
+
assert args.vocab_file is not None
|
46 |
+
tokenizer = HFTokenizer(args.vocab_file)
|
47 |
+
elif args.tokenizer_type.lower() == "HFGPT2Tokenizer".lower():
|
48 |
+
if args.vocab_file is None:
|
49 |
+
print(
|
50 |
+
"WARNING: No vocab file found, loading Huggingface's pretrained GPT2Tokenizer"
|
51 |
+
)
|
52 |
+
tokenizer = HFGPT2Tokenizer(args.vocab_file)
|
53 |
+
elif args.tokenizer_type.lower() == "CharLevelTokenizer".lower():
|
54 |
+
tokenizer = CharLevelTokenizer(vocab_size=512)
|
55 |
+
elif args.tokenizer_type.lower() == "TiktokenTokenizer".lower():
|
56 |
+
assert args.vocab_file is not None
|
57 |
+
tokenizer = TiktokenTokenizer(args.vocab_file)
|
58 |
+
else:
|
59 |
+
raise NotImplementedError(
|
60 |
+
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
|
61 |
+
)
|
62 |
+
|
63 |
+
# Add vocab size.
|
64 |
+
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
|
65 |
+
|
66 |
+
return tokenizer
|
67 |
+
|
68 |
+
|
69 |
+
def _vocab_size_with_padding(orig_vocab_size, args):
|
70 |
+
"""Pad vocab size so it is divisible by model parallel size and
|
71 |
+
still having GPU friendly size."""
|
72 |
+
|
73 |
+
after = orig_vocab_size
|
74 |
+
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
|
75 |
+
while (after % multiple) != 0:
|
76 |
+
after += 1
|
77 |
+
if args.rank == 0:
|
78 |
+
print(
|
79 |
+
" > padded vocab (size: {}) with {} dummy tokens "
|
80 |
+
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
|
81 |
+
flush=True,
|
82 |
+
)
|
83 |
+
return after
|
84 |
+
|
85 |
+
|
86 |
+
class AbstractTokenizer(ABC):
|
87 |
+
"""Abstract class for tokenizer."""
|
88 |
+
|
89 |
+
def __init__(self, name):
|
90 |
+
self.name = name
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
@property
|
94 |
+
@abstractmethod
|
95 |
+
def vocab_size(self):
|
96 |
+
pass
|
97 |
+
|
98 |
+
@property
|
99 |
+
@abstractmethod
|
100 |
+
def vocab(self):
|
101 |
+
"""Dictionary from vocab text token to id token."""
|
102 |
+
pass
|
103 |
+
|
104 |
+
@property
|
105 |
+
@abstractmethod
|
106 |
+
def inv_vocab(self):
|
107 |
+
"""Dictionary from vocab id token to text token."""
|
108 |
+
pass
|
109 |
+
|
110 |
+
@abstractmethod
|
111 |
+
def tokenize(self, text):
|
112 |
+
pass
|
113 |
+
|
114 |
+
def detokenize(self, token_ids):
|
115 |
+
raise NotImplementedError(
|
116 |
+
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
|
117 |
+
)
|
118 |
+
|
119 |
+
@property
|
120 |
+
def cls(self):
|
121 |
+
raise NotImplementedError(
|
122 |
+
"CLS is not provided for {} " "tokenizer".format(self.name)
|
123 |
+
)
|
124 |
+
|
125 |
+
@property
|
126 |
+
def sep(self):
|
127 |
+
raise NotImplementedError(
|
128 |
+
"SEP is not provided for {} " "tokenizer".format(self.name)
|
129 |
+
)
|
130 |
+
|
131 |
+
@property
|
132 |
+
def pad(self):
|
133 |
+
raise NotImplementedError(
|
134 |
+
"PAD is not provided for {} " "tokenizer".format(self.name)
|
135 |
+
)
|
136 |
+
|
137 |
+
@property
|
138 |
+
def eod(self):
|
139 |
+
raise NotImplementedError(
|
140 |
+
"EOD is not provided for {} " "tokenizer".format(self.name)
|
141 |
+
)
|
142 |
+
|
143 |
+
@property
|
144 |
+
def mask(self):
|
145 |
+
raise NotImplementedError(
|
146 |
+
"MASK is not provided for {} " "tokenizer".format(self.name)
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
class _GPT2BPETokenizer(AbstractTokenizer):
|
151 |
+
"""Original GPT2 BPE tokenizer."""
|
152 |
+
|
153 |
+
def __init__(self, vocab_file, merge_file):
|
154 |
+
name = "GPT2 BPE"
|
155 |
+
super().__init__(name)
|
156 |
+
|
157 |
+
self.tokenizer = GPT2Tokenizer(
|
158 |
+
vocab_file, merge_file, errors="replace", special_tokens=[], max_len=None
|
159 |
+
)
|
160 |
+
self.eod_id = self.tokenizer.encoder["<|endoftext|>"]
|
161 |
+
|
162 |
+
@property
|
163 |
+
def vocab_size(self):
|
164 |
+
return len(self.tokenizer.encoder)
|
165 |
+
|
166 |
+
@property
|
167 |
+
def vocab(self):
|
168 |
+
return self.tokenizer.encoder
|
169 |
+
|
170 |
+
@property
|
171 |
+
def inv_vocab(self):
|
172 |
+
return self.tokenizer.decoder
|
173 |
+
|
174 |
+
def tokenize(self, text):
|
175 |
+
return self.tokenizer.encode(text)
|
176 |
+
|
177 |
+
def detokenize(self, token_ids):
|
178 |
+
return self.tokenizer.decode(token_ids)
|
179 |
+
|
180 |
+
@property
|
181 |
+
def eod(self):
|
182 |
+
return self.eod_id
|
183 |
+
|
184 |
+
|
185 |
+
class SentencePieceTokenizer(AbstractTokenizer):
|
186 |
+
"""Designed to Integrate SP's Tokenizer."""
|
187 |
+
|
188 |
+
def __init__(self, vocab_file):
|
189 |
+
name = "SPM"
|
190 |
+
super().__init__(name)
|
191 |
+
|
192 |
+
self.tokenizer = spm.SentencePieceProcessor(model_file=vocab_file)
|
193 |
+
self.eod_id = self.tokenizer.piece_to_id("<|endoftext|>")
|
194 |
+
|
195 |
+
@property
|
196 |
+
def vocab_size(self):
|
197 |
+
return self.tokenizer.get_piece_size()
|
198 |
+
|
199 |
+
@property
|
200 |
+
def vocab(self):
|
201 |
+
return {
|
202 |
+
self.tokenizer.id_to_piece(idx): idx
|
203 |
+
for idx in range(self.tokenizer.get_piece_size())
|
204 |
+
}
|
205 |
+
|
206 |
+
@property
|
207 |
+
def inv_vocab(self):
|
208 |
+
return {
|
209 |
+
idx: self.tokenizer.id_to_piece(idx)
|
210 |
+
for idx in range(self.tokenizer.get_piece_size())
|
211 |
+
}
|
212 |
+
|
213 |
+
def tokenize(self, text):
|
214 |
+
return self.tokenizer.encode(text)
|
215 |
+
|
216 |
+
def detokenize(self, token_ids):
|
217 |
+
return self.tokenizer.decode(token_ids)
|
218 |
+
|
219 |
+
@property
|
220 |
+
def eod(self):
|
221 |
+
return self.eod_id
|
222 |
+
|
223 |
+
|
224 |
+
class HFTokenizer(AbstractTokenizer):
|
225 |
+
"""Designed to Integrate HF's Tokenizer library."""
|
226 |
+
|
227 |
+
def __init__(self, vocab_file):
|
228 |
+
name = "HFTokenizer"
|
229 |
+
super().__init__(name)
|
230 |
+
|
231 |
+
self.tokenizer = Tokenizer.from_file(vocab_file)
|
232 |
+
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
|
233 |
+
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
|
234 |
+
|
235 |
+
@property
|
236 |
+
def vocab_size(self):
|
237 |
+
return self.tokenizer.get_vocab_size()
|
238 |
+
|
239 |
+
@property
|
240 |
+
def vocab(self):
|
241 |
+
return self.tokenizer.get_vocab()
|
242 |
+
|
243 |
+
@property
|
244 |
+
def inv_vocab(self):
|
245 |
+
return self.tokenizer.decoder
|
246 |
+
|
247 |
+
def tokenize(self, text: str):
|
248 |
+
return self.tokenizer.encode(text).ids
|
249 |
+
|
250 |
+
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
251 |
+
return self.tokenizer.encode_batch(text_batch)
|
252 |
+
|
253 |
+
def detokenize(self, token_ids):
|
254 |
+
return self.tokenizer.decode(token_ids)
|
255 |
+
|
256 |
+
@property
|
257 |
+
def eod(self):
|
258 |
+
return self.eod_id
|
259 |
+
|
260 |
+
|
261 |
+
class HFGPT2Tokenizer(AbstractTokenizer):
|
262 |
+
"""Designed to Integrate the pretrained OpenAI GPT2 Tokenizers from HF"""
|
263 |
+
|
264 |
+
def __init__(self, vocab_file=None, fast=True):
|
265 |
+
name = "HFGPT2Tokenizer"
|
266 |
+
if fast:
|
267 |
+
name += "Fast"
|
268 |
+
super().__init__(name)
|
269 |
+
if vocab_file is None:
|
270 |
+
vocab_file = "gpt2"
|
271 |
+
if fast:
|
272 |
+
self.tokenizer = GPT2TokenizerFast.from_pretrained(vocab_file)
|
273 |
+
else:
|
274 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained(vocab_file)
|
275 |
+
|
276 |
+
self.tokenizer.add_special_tokens({"pad_token": "<|padding|>"})
|
277 |
+
self.eod_id = self.tokenizer.eos_token_id
|
278 |
+
self.pad_id = self.tokenizer.pad_token_id
|
279 |
+
|
280 |
+
@property
|
281 |
+
def vocab_size(self):
|
282 |
+
return len(self.tokenizer)
|
283 |
+
|
284 |
+
@property
|
285 |
+
def vocab(self):
|
286 |
+
return self.tokenizer.get_vocab()
|
287 |
+
|
288 |
+
@property
|
289 |
+
def inv_vocab(self):
|
290 |
+
return self.tokenizer._tokenizer.decoder
|
291 |
+
|
292 |
+
def tokenize(self, text: str):
|
293 |
+
return self.tokenizer.encode(text)
|
294 |
+
|
295 |
+
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
296 |
+
if isinstance(text_batch, str):
|
297 |
+
text_batch = [text_batch]
|
298 |
+
return [self.tokenize(t) for t in text_batch]
|
299 |
+
|
300 |
+
def detokenize(self, token_ids):
|
301 |
+
return self.tokenizer.decode(token_ids)
|
302 |
+
|
303 |
+
@property
|
304 |
+
def eod(self):
|
305 |
+
return self.eod_id
|
306 |
+
|
307 |
+
|
308 |
+
class CharLevelTokenizer(AbstractTokenizer):
|
309 |
+
"""Character Level Tokenizer"""
|
310 |
+
|
311 |
+
def __init__(self, vocab_size):
|
312 |
+
name = "CharLevelTokenizer"
|
313 |
+
super().__init__(name)
|
314 |
+
self._vocab_size = vocab_size
|
315 |
+
self.eod_id = 0
|
316 |
+
self.pad_id = 1
|
317 |
+
|
318 |
+
def clamp(self, n):
|
319 |
+
return max(32, min(n, self.vocab_size))
|
320 |
+
|
321 |
+
@property
|
322 |
+
def vocab_size(self):
|
323 |
+
return self._vocab_size
|
324 |
+
|
325 |
+
@property
|
326 |
+
def vocab(self):
|
327 |
+
raise NotImplementedError
|
328 |
+
|
329 |
+
@property
|
330 |
+
def inv_vocab(self):
|
331 |
+
raise NotImplementedError
|
332 |
+
|
333 |
+
def decode_token(self, token: int):
|
334 |
+
return str(chr(self.clamp(token)))
|
335 |
+
|
336 |
+
def tokenize(self, text: str):
|
337 |
+
return list(np.fromstring(text, dtype=np.uint8))
|
338 |
+
|
339 |
+
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
340 |
+
if isinstance(text_batch, list):
|
341 |
+
return [self.tokenize(s) for s in text_batch]
|
342 |
+
else:
|
343 |
+
return self.tokenize(text_batch)
|
344 |
+
|
345 |
+
def detokenize(self, token_ids):
|
346 |
+
return "".join(list(map(self.decode_token, token_ids)))
|
347 |
+
|
348 |
+
@property
|
349 |
+
def eod(self):
|
350 |
+
return self.eod_id
|
351 |
+
|
352 |
+
|
353 |
+
class TiktokenTokenizer(AbstractTokenizer):
|
354 |
+
"""Tokenizer from OpenAI's tiktoken implementation"""
|
355 |
+
|
356 |
+
def __init__(self, vocab_file):
|
357 |
+
try:
|
358 |
+
import tiktoken
|
359 |
+
except ModuleNotFoundError:
|
360 |
+
print("Please install tiktoken: (https://github.com/openai/tiktoken)")
|
361 |
+
raise Exception
|
362 |
+
|
363 |
+
name = "TiktokenTokenizer"
|
364 |
+
super().__init__(name)
|
365 |
+
|
366 |
+
self.tokenizer = tiktoken.get_encoding(vocab_file)
|
367 |
+
self.eod_id = self.tokenizer.eot_token
|
368 |
+
self.pad_id = None
|
369 |
+
|
370 |
+
@property
|
371 |
+
def vocab_size(self):
|
372 |
+
return self.tokenizer.n_vocab
|
373 |
+
|
374 |
+
@property
|
375 |
+
def vocab(self):
|
376 |
+
raise NotImplementedError(
|
377 |
+
"TiktokenTokenizer does not implement vocabulary access."
|
378 |
+
)
|
379 |
+
|
380 |
+
@property
|
381 |
+
def inv_vocab(self):
|
382 |
+
raise NotImplementedError(
|
383 |
+
"TiktokenTokenizer does not implement vocabulary access. \
|
384 |
+
To get the idx-th token in vocabulary, use tokenizer.decode([idx]) ."
|
385 |
+
)
|
386 |
+
|
387 |
+
def tokenize(self, text: str):
|
388 |
+
return self.tokenizer.encode(text) # , allowed_special="all")
|
389 |
+
|
390 |
+
def tokenize_batch(self, text_batch: List[str]):
|
391 |
+
return self.tokenizer.encode_batch(text_batch, allowed_special="all")
|
392 |
+
|
393 |
+
def detokenize(self, token_ids):
|
394 |
+
return self.tokenizer.decode(tokens=token_ids, errors="strict")
|
395 |
+
|
396 |
+
@property
|
397 |
+
def eod(self):
|
398 |
+
return self.eod_id
|
399 |
+
|
400 |
+
@property
|
401 |
+
def pad(self):
|
402 |
+
raise NotImplementedError
|
vocab/gpt_neox_chinese_v1/tokenizer/train_tokenizer.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, EleutherAI
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Assumes a dataset of jsonl files in the same format as the neox training set.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers
|
20 |
+
from tokenizers.normalizers import NFKC
|
21 |
+
|
22 |
+
from glob import glob
|
23 |
+
import os
|
24 |
+
import json
|
25 |
+
import argparse
|
26 |
+
|
27 |
+
|
28 |
+
def load_jsonl(input_path, quiet=True) -> list:
|
29 |
+
"""
|
30 |
+
Read list of objects from a JSON lines file.
|
31 |
+
"""
|
32 |
+
data = []
|
33 |
+
with open(input_path, "r", encoding="utf-8") as f:
|
34 |
+
for line in f:
|
35 |
+
data.append(json.loads(line.rstrip("\n|\r")))
|
36 |
+
if not quiet:
|
37 |
+
print("Loaded {} records from {}".format(len(data), input_path))
|
38 |
+
return data
|
39 |
+
|
40 |
+
|
41 |
+
def json_iterator(input_dir, text_key="text"):
|
42 |
+
all_jsonls = glob(f"{input_dir}/*.jsonl") + glob(f"{input_dir}/*.json")
|
43 |
+
for j in all_jsonls:
|
44 |
+
data = load_jsonl(j)
|
45 |
+
for doc in data:
|
46 |
+
yield doc[text_key]
|
47 |
+
|
48 |
+
|
49 |
+
def train_tokenizer(
|
50 |
+
input_dir: str, save_path: str, tokenizer_type: str = "BPE", vocab_size: int = 52000
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Trains a tokenizer on all the json files in `input_dir` and saves it to `save_path`
|
54 |
+
|
55 |
+
:param input_dir: input directory containing jsonl files
|
56 |
+
:param save_path: path to save tokenizer to
|
57 |
+
:param tokenizer_type: type of tokenizer to train.
|
58 |
+
:param vocab_size: int, size of tokenizer's vocab
|
59 |
+
:return:
|
60 |
+
"""
|
61 |
+
|
62 |
+
if tokenizer_type == "BPE":
|
63 |
+
model = models.BPE()
|
64 |
+
else:
|
65 |
+
raise NotImplementedError(f"Tokenizer type {tokenizer_type} not implemented")
|
66 |
+
tokenizer = Tokenizer(model)
|
67 |
+
|
68 |
+
# Customize pre-tokenization and decoding
|
69 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
|
70 |
+
tokenizer.decoder = decoders.ByteLevel()
|
71 |
+
tokenizer.post_processor = processors.ByteLevel(trim_offsets=True)
|
72 |
+
tokenizer.normalizer = NFKC()
|
73 |
+
|
74 |
+
# And then train
|
75 |
+
trainer = trainers.BpeTrainer(
|
76 |
+
vocab_size=vocab_size, special_tokens=["<|endoftext|>", "<|padding|>"]
|
77 |
+
)
|
78 |
+
tokenizer.train_from_iterator(json_iterator(input_dir), trainer)
|
79 |
+
|
80 |
+
# And Save it
|
81 |
+
tokenizer.save(save_path, pretty=True)
|
82 |
+
print(f"Tokenizer saved at {save_path}")
|
83 |
+
|
84 |
+
|
85 |
+
def parse_args():
|
86 |
+
parser = argparse.ArgumentParser(
|
87 |
+
description="script for training a multilingual "
|
88 |
+
"HF tokenizer on CC dumps with upweighting for low resource languages"
|
89 |
+
)
|
90 |
+
parser.add_argument(
|
91 |
+
"--json_input_dir",
|
92 |
+
type=str,
|
93 |
+
help="Path to folder containing tokenizer training data in jsonl format",
|
94 |
+
)
|
95 |
+
parser.add_argument(
|
96 |
+
"--tokenizer_output_path",
|
97 |
+
type=str,
|
98 |
+
help="Path to which your trained tokenizer will be saved (should end in .json)",
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--tokenizer_type",
|
102 |
+
type=str,
|
103 |
+
help="type of tokenizer to train, currently only BPE is supported",
|
104 |
+
choices=["BPE"],
|
105 |
+
default=["BPE"],
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"-v",
|
109 |
+
"--vocab_size",
|
110 |
+
help="vocabulary size of tokenizer, default=52k",
|
111 |
+
type=int,
|
112 |
+
default=52000,
|
113 |
+
)
|
114 |
+
return parser.parse_args()
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
|
119 |
+
args = parse_args()
|
120 |
+
|
121 |
+
train_tokenizer(
|
122 |
+
args.json_input_dir,
|
123 |
+
save_path=args.tokenizer_output_path,
|
124 |
+
tokenizer_type=args.tokenizer_type,
|
125 |
+
vocab_size=args.vocab_size,
|
126 |
+
)
|