Spaces:
Running
Running
import gradio as gr | |
import json | |
import pandas as pd | |
from vocab import tokenizer_factory | |
from character_util import iter_vocab | |
from utils.log_util import logger | |
from functools import lru_cache | |
default_user_input = """\ | |
Replace this text in the input field to see how tokenization works. | |
Buenos días! | |
华为发布Mate60手机。 | |
ラグビーワールドカップ2023フランス""" | |
# default_tokenizer_name_1 = "Meta/llama3" | |
default_tokenizer_name_1 = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" | |
default_tokenizer_name_2 = "openai/gpt-4" | |
# @lru_cache | |
def tokenize( | |
text: str, | |
tokenizer_name: str, | |
color_num: int = 5, | |
add_special_token: bool = False | |
): | |
""" | |
""" | |
logger.info("param=" + json.dumps({"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False)) | |
pos_tokens = [] | |
tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name) | |
if add_special_token: | |
encoding = tokenizer.encode(text, add_special_tokens=True) | |
else: | |
encoding = tokenizer.encode(text, add_special_tokens=False) | |
table = [] | |
for idx, token_id in enumerate(encoding): | |
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd" | |
pos_tokens.extend([(decode_text, str(idx % color_num))]) | |
# token "Byte": # 这是 utf-8编码吧? | |
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0] | |
if isinstance(token, bytes): | |
try: | |
token_str = token.decode("utf-8") | |
except: | |
token_str = token.decode("utf-8", errors="ignore") | |
logger.error(f"{idx}: decode_error: " + json.dumps( # gpt_35_turbo 经常有token会decode error,这里用来记录一下 | |
{"tokenizer_type": tokenizer_name, "token": str(token), "token_str": token_str}, | |
ensure_ascii=False)) | |
token_bytes = token | |
# json_dumps = json.dumps(token_str) | |
elif isinstance(token, str): | |
token_str = token | |
token_bytes = bytes(token_str, "utf-8") | |
# json_dumps = json.dumps(token_str) | |
else: | |
logger.error(f"{idx}: wrong type for token {token_id} {type(token)} " + json.dumps( | |
{"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False)) | |
token_str = token | |
token_bytes = token | |
# continue | |
# ⭐ | |
# TODO: gpt3.5_turbo错误: 只有id和text是对的,token和 utf8都是错的。说明 convert_ids_to_tokens 出错了。 | |
table.append( | |
{"TokenID": token_id, | |
"Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama | |
"Text": decode_text, # | |
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes) | |
"UTF8 Bytes": str(token_bytes), | |
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode | |
} | |
) | |
table_df = pd.DataFrame(table) | |
logger.info(f"tokenizer_type={tokenizer_name}, Tokens={table[:4]}") | |
# print(table_df) | |
return gr.update(value=pos_tokens, label=f"Tokens: {len(encoding)}"), table_df | |
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2): | |
""" | |
input_text.change | |
""" | |
pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1) | |
pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2) | |
return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2 | |
def basic_count(tokenizer_name): | |
stats = iter_vocab(tokenizer_name) | |
return stats['vocab_size'], f'{stats["organization"]}' | |
# return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}' | |
# def get_compress_rate(tokenizer_name, all_corpus, unit): | |
# tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name) | |
# compress_rate_stats = tokenize_corpus(tokenizer, all_corpus) | |
# compress_rate = unit_convertor(compress_rate_stats, unit) | |
# return compress_rate | |
def get_overlap_token_size(tokenizer_name_1, tokenizer_name_2): | |
tokenizer1 = tokenizer_factory.get_tokenizer(tokenizer_name_1) | |
tokenizer2 = tokenizer_factory.get_tokenizer(tokenizer_name_2) | |
vocab_set_1 = tokenizer1.get_vocab().keys() | |
vocab_set_2 = tokenizer2.get_vocab().keys() | |
token1 = next(iter(vocab_set_1)) | |
token2 = next(iter(vocab_set_2)) | |
if type(token1) != type(token2): # bytes str | |
if isinstance(token1, str): | |
vocab_set_1 = set([token.encode("utf-8") for token in vocab_set_1]) | |
if isinstance(token2, str): | |
vocab_set_2 = set([token.encode("utf-8") for token in vocab_set_2]) | |
overlap_tokens = vocab_set_1 & vocab_set_2 | |
overlap_token_size = len(overlap_tokens) | |
logger.info( | |
f"{overlap_token_size} OverlapTokens of {tokenizer_name_1} {tokenizer_name_2}: {list(overlap_tokens)[:10]}") | |
return overlap_token_size, overlap_token_size | |
def on_load(url_params, request: gr.Request): | |
""" | |
onLoad | |
""" | |
text = None | |
tokenizer_type_1 = None | |
tokenizer_type_2 = None | |
try: | |
url_params = json.loads(url_params) | |
except: | |
url_params = {} | |
if request: | |
logger.info(str(request.headers)) | |
client_ip = request.client.host | |
# local_ip = socket.gethostbyname(socket.gethostbyname("")) | |
# headers = request.kwargs['headers'] | |
# if headers and 'x-forwarded-for' in headers: | |
# x_forwarded_for = headers['x-forwarded-for'] | |
# client_ip = x_forwarded_for.split(' ')[0] if x_forwarded_for else "" | |
# if "referer" in request.headers: # not work for huggingface-space | |
# url_params = parse_qs(urlparse(request.headers["referer"]).query) | |
# url_params = {k: v[0] for k, v in url_params.items() if len(v) > 0} | |
tokenizer_type_1 = url_params.get("tokenizer1", default_tokenizer_name_1) | |
tokenizer_type_2 = url_params.get("tokenizer2", default_tokenizer_name_2) | |
text = url_params.get("text", default_user_input) | |
logger.info(f"client_ip: {client_ip}; params: {url_params}") | |
return text, tokenizer_type_1, tokenizer_type_2 | |
# def compress_rate_unit_change(unit): | |
# return gr.update(label=f"Compress Rate: {unit}"), gr.update(label=f"Compress Rate: {unit}"), | |
def test_coding(): | |
bytes1 = b'\xe4\xb8\xad' | |
print(bytes1) # b'\xe4\xb8\xad' | |
if __name__ == "__main__": | |
print(get_overlap_token_size("gpt-35-turbo", "gpt-4")) | |
# print(basic_count("internlm_chat_7b")) | |