Spaces:
Running
Running
""" | |
## TODO | |
code: | |
math: | |
whitespace: | |
""" | |
import json | |
import os | |
import sys | |
import pandas as pd | |
from datasets import load_dataset | |
from utils.log_util import logger | |
from vocab import tokenizer_factory, TokenizerConfig | |
from typing import List, Optional, Union, Literal | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
common_units = ["g_bytes/b_tokens", "b_tokens/g_bytes", "t_bytes/t_tokens", "t_tokens/t_bytes", "n_chars/n_tokens", ] | |
common_corpuses = sorted(["cc100/en", "cc100/zh-Hans", "cc100/es", "cc100/fr", "cc100/de", "cc100/ko", | |
"cc100/fa", "cc100/ar", "cc100/ja"]) | |
VALID_CODES_CC100 = [ | |
"am", "ar", "as", "az", "be", "bg", "bn", "bn_rom", "br", "bs", "ca", "cs", "cy", "da", "de", | |
"el", "en", "eo", "es", "et", "eu", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gn", "gu", | |
"ha", "he", "hi", "hi_rom", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka", | |
"kk", "km", "kn", "ko", "ku", "ky", "la", "lg", "li", "ln", "lo", "lt", "lv", "mg", "mk", "ml", | |
"mn", "mr", "ms", "my", "my_zaw", "ne", "nl", "no", "ns", "om", "or", "pa", "pl", "ps", "pt", | |
"qu", "rm", "ro", "ru", "sa", "si", "sc", "sd", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", | |
"sw", "ta", "ta_rom", "te", "te_rom", "th", "tl", "tn", "tr", "ug", "uk", "ur", "ur_rom", "uz", | |
"vi", "wo", "xh", "yi", "yo", "zh-Hans", "zh-Hant", "zu", | |
] | |
# code: https://huggingface.co/datasets/codeparrot/github-code-clean python java c sql html | |
# math: | |
def get_n_bytes_of_string(string_text): | |
n_bytes = len(string_text.encode("utf-8")) | |
return n_bytes | |
def unit_convertor(stat, unit): | |
n_tokens = stat["_n_tokens"] | |
n_chars = stat["_n_chars"] | |
n_bytes = stat["_n_bytes"] | |
if n_tokens is None: | |
return None | |
n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000) | |
n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000) | |
n_bytes_in_mb = n_bytes / (1024 * 1024) | |
n_bytes_in_gb = n_bytes_in_mb / 1024 | |
n_bytes_in_tb = n_bytes_in_gb / 1024 | |
# n_chars_in_billion = n_chars / (1000 * 1000 * 1000) | |
if unit == "n_tokens/n_bytes": | |
value = n_tokens / n_bytes | |
elif unit in ["char/token", "chars_per_token"]: # 重要:平均一个token包含多少个字符。 | |
value = n_chars / n_tokens | |
elif unit in ["token/char", "tokens_per_char"]: # 一个中文汉字需要几个token? | |
value = n_tokens / n_chars | |
elif unit == "g_bytes/b_tokens": | |
value = n_bytes_in_gb / n_tokens_in_billion | |
elif unit == "b_tokens/g_bytes": | |
value = n_tokens_in_billion / n_bytes_in_gb | |
elif unit == "t_bytes/t_tokens": # 重要: | |
value = n_bytes_in_tb / n_tokens_in_trillion | |
elif unit == "t_tokens/t_bytes": | |
value = n_tokens_in_trillion / n_bytes_in_tb | |
else: | |
raise "measure not support" | |
return round(value, 3) | |
def _merge_stats_by_corpus(stats_by_corpus, oov_threshold=0.3): | |
""" | |
""" | |
all_stats = list(stats_by_corpus.values()) | |
assert len(set([stats["tokenizer"] for stats in all_stats])) == 1 | |
reversible = all(stat['reversible'] for stat in all_stats) | |
is_support = all(stat['oov_ratio'] < oov_threshold for stat in all_stats) | |
merged_stats = { | |
"tokenizer": all_stats[0]["tokenizer"], | |
"organization": all_stats[0]["organization"], | |
"vocab_size": all_stats[0]["vocab_size"], | |
"_n_bytes": 0, | |
"_n_tokens": 0 if is_support else None, | |
"_n_chars": 0, | |
"_n_oov_chars": 0, | |
"reversible": True, | |
} | |
for stats in all_stats: | |
merged_stats["_n_bytes"] += stats["_n_bytes"] | |
merged_stats["_n_chars"] += stats["_n_chars"] | |
if is_support: # The number of tokens cannot be accurately counted, when there are too many UNKs. | |
merged_stats["_n_tokens"] += stats["_n_tokens"] | |
merged_stats["_n_oov_chars"] += stats["_n_oov_chars"] | |
merged_stats["reversible"] &= stats['reversible'] | |
merged_stats.update({ | |
"oov_ratio": float("%.4g" % (stats["_n_oov_chars"] / stats["_n_chars"])), | |
"reversible": reversible | |
}) | |
return merged_stats | |
def to_dataframe(stats, units=None): | |
if units is None: | |
units = common_units | |
elif not isinstance(units, list): | |
units = [units] | |
table = [] | |
for stat in stats.values(): | |
columns = {k: v for k, v in stat.items() if not k.startswith("_")} | |
for unit in units: | |
if unit not in stat: | |
columns[unit] = unit_convertor(stat, unit) | |
else: | |
logger.error(f"unit {unit} not support") | |
table.append(columns) | |
df = pd.DataFrame(table) | |
return df | |
cache = {} | |
def tokenize_corpus( | |
tokenizer_name: str, | |
corpuses: List[str], | |
cache_dir: str = "stats" | |
) -> dict: | |
""" | |
:param tokenizer_name: | |
:param corpuses: | |
:param cache_dir: | |
:return: | |
""" | |
def _char_based_oov(src_text, decode_text): | |
oov_chars = [] | |
for char in src_text: | |
if char not in decode_text: | |
oov_chars.append(char) | |
n_oov_chars = len(oov_chars) | |
oov_charset = list(dict.fromkeys(oov_chars)) | |
return n_oov_chars, oov_charset | |
def _tokenize(tokenizer, datasets, detail_path=None): | |
""" | |
:param tokenizer: | |
:param datasets: | |
:param detail_path: | |
:return: | |
""" | |
n_bytes = 0 | |
n_tokens = 0 | |
n_chars = 0 | |
n_oov_chars = 0 | |
diff_details = [] | |
oov_charset = set() | |
unk_token_id = None | |
if hasattr(tokenizer, "unk_token"): | |
unk_token_id = tokenizer.unk_token_id | |
for dataset in datasets: | |
for item in dataset: | |
text = item["text"] | |
n_bytes += get_n_bytes_of_string(text) | |
n_chars += len(text) | |
ids = tokenizer.encode(text, add_special_tokens=False) | |
# detect oov | |
decode_text = tokenizer.decode(ids) | |
decode_text_without_unk = tokenizer.decode([token_id for token_id in ids if token_id != unk_token_id]) | |
if decode_text != text: | |
_n_oov_chars, _oov_charset = _char_based_oov(text, decode_text_without_unk) | |
diff_details.append( | |
{ | |
"text": text, | |
"decode_text": decode_text, | |
"decode_text_without_unk": decode_text_without_unk, | |
"n_oov_chars": _n_oov_chars, | |
'oov_ratio': _n_oov_chars / len(text), | |
'oov_charset': json.dumps(_oov_charset, ensure_ascii=False), | |
} | |
) | |
n_oov_chars += _n_oov_chars | |
oov_charset.update(_oov_charset) | |
n_tokens += len(ids) | |
stat = { | |
"_n_bytes": n_bytes, | |
"_n_tokens": n_tokens, | |
"_n_chars": n_chars, | |
"_n_oov_chars": n_oov_chars, | |
"oov_ratio": n_oov_chars / n_chars, | |
'_oov_charset': json.dumps(list(oov_charset), ensure_ascii=False), | |
"reversible": len(diff_details) == 0 | |
} | |
if detail_path and diff_details: | |
logger.info(f"saving tokenization detail to '{detail_path}'") | |
with open(detail_path, "w", encoding="utf-8") as f: | |
f.write(json.dumps(diff_details, ensure_ascii=False, indent=2)) | |
# print(f"{tokenizer_config.name_or_path}, {infer_tokenizer_type(tokenizer_config)}\n" | |
# f"reversible: false; unk_token: {get_unk(tokenizer_config)}," | |
# f" unk_ratio: {unk_count / len(encoding):.4f}; oov: []") | |
# for diff_detail in diff_details: | |
# # print(f"text[{i}] = {str(bytes(text[i:], 'utf-8'))}\n" | |
# # f"decoding[{i}] = {str(bytes(decoding[i:], 'utf-8'))}") | |
# f.write(f"text= {json.dumps(text[i:], ensure_ascii=False)}, \n" | |
# f"decoding[{i}] = {json.dumps(decoding[i:], ensure_ascii=False)}") | |
return stat | |
# load from cache | |
cache_id = f"{tokenizer_name} @ {'.'.join(corpuses)}" | |
cache_path = os.path.join(cache_dir, "compression_rate.json") | |
if not cache and os.path.exists(cache_path): | |
with open(cache_path, "r", encoding="utf-8") as f_tmp: | |
cache.update(json.load(f_tmp)) | |
if cache_id in cache: | |
# logger.info(f"loading {cache_id} from in-memory cache") | |
return cache[cache_id] | |
# tokenize corpus | |
tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name) | |
datasets = [load_dataset("eson/cc100-samples", corpus.replace("cc100/", ""), split="train") for corpus in corpuses] | |
stat = { | |
"tokenizer": tokenizer_factory.get_name_with_hyperlink(tokenizer_name), | |
"organization": tokenizer_factory.get_tokenizer_config(tokenizer_name).org, | |
"vocab_size": len(tokenizer), | |
} | |
tokenize_detail_dir = os.path.join(cache_dir, "compression_rate") | |
os.makedirs(tokenize_detail_dir, exist_ok=True) | |
tokenize_detail_path = os.path.join(tokenize_detail_dir, cache_id.replace("/", ".") + ".diff.json") | |
stat.update(_tokenize(tokenizer, datasets, detail_path=tokenize_detail_path)) | |
# add basic info | |
# save to cache | |
len_before = len(cache) | |
cache[cache_id] = stat | |
len_after = len(cache) | |
logger.info(f"saving '{cache_id}' to memory and file cache '{cache_path}': {len_before}->{len_after}") | |
with open(cache_path, "w", encoding="utf-8") as f_tmp: | |
json.dump(cache, f_tmp, ensure_ascii=False, indent=2) | |
return stat | |
def get_compression_leaderboard( | |
corpuses: List[str] = ['cc100/en'], | |
unit: str = "b_tokens/g_bytes", | |
tokenizer_filter: Optional[str] = None, | |
return_type: Optional[Literal["dict", "dataframe"]] = "dataframe" | |
) -> Union[pd.DataFrame, dict]: | |
""" | |
""" | |
logger.info(f"corpuses: {corpuses}; unit: {unit}; tokenizer_filter: {tokenizer_filter}") | |
stats = {} | |
if tokenizer_filter is not None: | |
tokenizer_names = [tokenizer_name for tokenizer_name in tokenizer_factory.all_tokenizer_names | |
if tokenizer_filter.lower() in tokenizer_name.lower()] | |
else: | |
tokenizer_names = tokenizer_factory.all_tokenizer_names | |
for tokenizer_name in tokenizer_names: | |
stats_by_corpus = {} | |
for corpus in corpuses: | |
stats_by_corpus[corpus] = tokenize_corpus(tokenizer_name, [corpus]) | |
stats[tokenizer_name] = _merge_stats_by_corpus(stats_by_corpus) | |
if return_type == "dataframe": | |
token_number_unit, file_size_unit = unit.split("/") | |
reverse_unit = f"{file_size_unit}/{token_number_unit}" | |
stats = to_dataframe(stats, [unit, reverse_unit, "char/token"]) | |
stats = stats.sort_values(["oov_ratio", unit], ascending=[True, True]) | |
stats = stats.rename(columns={"oov_ratio": f' ⬆️oov_ratio'}).rename(columns={unit: f' ⬆️{unit}'}) # ⬇ | |
return stats | |
def main(): | |
if len(sys.argv) == 3: | |
tokenizer_filter = [sys.argv[1]] | |
corpuses = [sys.argv[2]] | |
else: | |
tokenizer_filter = None | |
corpuses = common_corpuses | |
# tokenizer_filter = "openai" | |
# corpuses = ["cc100/en", "cc100/zh-Hans"] | |
df = get_compression_leaderboard(corpuses, tokenizer_filter=tokenizer_filter) | |
# print(df.to_markdown(index=False, tablefmt='fancy_grid')) | |
logger.info(f"\n{df.to_markdown(index=False)}") | |
if __name__ == "__main__": | |
main() | |