Spaces:
Running
Running
"""Tokenization classes for ChatGLM.""" | |
import sys | |
import unicodedata | |
from typing import List, Optional, Union | |
from functools import lru_cache | |
import os | |
import collections | |
import re | |
from transformers.tokenization_utils import PreTrainedTokenizer | |
from icetk.text_tokenizer import TextTokenizer | |
from icetk.utils import auto_create | |
import icetk.sentencepiece_model_pb2 as sp_model | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"THUDM/chatglm-6b": 2048, | |
} | |
class SPTokenizer: | |
def __init__( | |
self, | |
vocab_file, | |
max_blank_length=80, | |
byte_fallback=True, | |
): | |
assert vocab_file is not None | |
self.vocab_file = vocab_file | |
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"] | |
self.max_blank_length = max_blank_length | |
self.byte_fallback = byte_fallback | |
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False) | |
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True) | |
def _configure_tokenizer( | |
text_tokenizer: TextTokenizer, | |
special_tokens: List[str], | |
max_blank_length: int, | |
byte_fallback: bool, | |
encode_special_tokens=False, | |
): | |
# special token | |
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE | |
for token in special_tokens: | |
text_tokenizer.proto.pieces.append( | |
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type) | |
) | |
# whitespaces | |
for token in [SPTokenizer.get_tab_token()] + [ | |
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1) | |
]: | |
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4)) | |
# byte fallback | |
if byte_fallback: | |
text_tokenizer.proto.trainer_spec.byte_fallback = True | |
for i in range(256): | |
text_tokenizer.proto.pieces.append( | |
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6) | |
) | |
text_tokenizer.refresh() | |
def _build_text_tokenizer(self, encode_special_tokens=False): | |
tokenizer = TextTokenizer(self.vocab_file) | |
self._configure_tokenizer( | |
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens | |
) | |
return tokenizer | |
def _get_text_tokenizer(self, encode_special_tokens=False): | |
if encode_special_tokens: | |
return self.special_text_tokenizer | |
else: | |
return self.text_tokenizer | |
def get_blank_token(length: int): | |
assert length >= 2 | |
return f"<|blank_{length}|>" | |
def get_tab_token(): | |
return f"<|tab|>" | |
def num_image_tokens(self): | |
return 20000 | |
def num_text_tokens(self): | |
return self.text_tokenizer.num_tokens | |
def num_tokens(self): | |
return self.num_image_tokens + self.num_text_tokens | |
def _encode_whitespaces(text: str, max_len: int = 80): | |
text = text.replace("\t", SPTokenizer.get_tab_token()) | |
for i in range(max_len, 1, -1): | |
text = text.replace(" " * i, SPTokenizer.get_blank_token(i)) | |
return text | |
def _preprocess(self, text: str, linebreak=True, whitespaces=True): | |
if linebreak: | |
text = text.replace("\n", "<n>") | |
if whitespaces: | |
text = self._encode_whitespaces(text, max_len=self.max_blank_length) | |
return text | |
def encode( | |
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True | |
) -> List[int]: | |
""" | |
@param text: Text to encode. | |
@param linebreak: Whether to encode newline (\n) in text. | |
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. | |
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. | |
@param add_dummy_prefix: Whether to add dummy blank space in the beginning. | |
""" | |
text = self._preprocess(text, linebreak, whitespaces) | |
if not add_dummy_prefix: | |
text = "<n>" + text | |
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text) | |
tokens = [x + self.num_image_tokens for x in tmp] | |
return tokens if add_dummy_prefix else tokens[2:] | |
def decode(self, text_ids: List[int], special_tokens=False) -> str: | |
ids = [int(_id) - self.num_image_tokens for _id in text_ids] | |
ids = [_id for _id in ids if _id >= 0] | |
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids) | |
text = text.replace("<n>", "\n") | |
text = text.replace(SPTokenizer.get_tab_token(), "\t") | |
for i in range(2, self.max_blank_length + 1): | |
text = text.replace(self.get_blank_token(i), " " * i) | |
return text | |
def tokenize( | |
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True | |
) -> List[str]: | |
""" | |
@param text: Text to encode. | |
@param linebreak: Whether to encode newline (\n) in text. | |
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. | |
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. | |
@param add_dummy_prefix: Whether to add dummy blank space in the beginning. | |
""" | |
text = self._preprocess(text, linebreak, whitespaces) | |
if not add_dummy_prefix: | |
text = "<n>" + text | |
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text) | |
return tokens if add_dummy_prefix else tokens[2:] | |
def __getitem__(self, x: Union[int, str]): | |
if isinstance(x, int): | |
if x < self.num_image_tokens: | |
return "<image_{}>".format(x) | |
else: | |
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens) | |
elif isinstance(x, str): | |
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit(): | |
return int(x[7:-1]) | |
else: | |
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens | |
else: | |
raise ValueError("The key should be str or int.") | |
class ChatGLMTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
""" | |
vocab_files_names = {"vocab_file": "ice_text.model"} | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
model_input_names = ["input_ids"] | |
def __init__( | |
self, | |
vocab_file, | |
do_lower_case=False, | |
remove_space=False, | |
bos_token='sop', | |
eos_token='eos', | |
eop_token='eop', | |
mask_token='[MASK]', | |
gmask_token='[gMASK]', | |
padding_side="left", | |
**kwargs | |
) -> None: | |
super().__init__( | |
do_lower_case=do_lower_case, | |
remove_space=remove_space, | |
padding_side=padding_side, | |
**kwargs | |
) | |
self.do_lower_case = do_lower_case | |
self.remove_space = remove_space | |
self.vocab_file = vocab_file | |
self.bos_token = bos_token | |
self.eos_token = eos_token | |
self.eop_token = eop_token | |
self.mask_token = mask_token | |
self.gMASK_token = gmask_token | |
self.sp_tokenizer = SPTokenizer(vocab_file) | |
""" Initialisation """ | |
def eop_token_id(self) -> Optional[int]: | |
""" | |
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been | |
set. | |
""" | |
if self.eop_token is None: | |
return None | |
return self.convert_tokens_to_ids(self.eop_token) | |
def vocab_size(self): | |
""" Returns vocab size """ | |
return self.sp_tokenizer.num_tokens | |
def get_vocab(self): | |
""" Returns vocab as a dict """ | |
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def preprocess_text(self, inputs): | |
if self.remove_space: | |
outputs = " ".join(inputs.strip().split()) | |
else: | |
outputs = inputs | |
if self.do_lower_case: | |
outputs = outputs.lower() | |
return outputs | |
def _tokenize(self, text, **kwargs): | |
""" Returns a tokenized string. """ | |
text = self.preprocess_text(text) | |
seq = self.sp_tokenizer.tokenize(text) | |
return seq | |
def decode( | |
self, | |
token_ids: Union[List[int], List[List[int]]], | |
skip_special_tokens: bool = False, | |
clean_up_tokenization_spaces: bool = True, | |
spaces_between_special_tokens: bool = True, | |
**kwargs | |
) -> str: | |
if isinstance(token_ids[0], list): | |
tokens = [] | |
for single_token_ids in token_ids: | |
if self.pad_token_id in single_token_ids: # remove pad | |
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids)) | |
tokens.append(self.sp_tokenizer.decode(single_token_ids)) | |
return (tokens) | |
else: | |
if self.pad_token_id in token_ids: # remove pad | |
token_ids = list(filter((self.pad_token_id).__ne__, token_ids)) | |
return self.sp_tokenizer.decode(token_ids) | |
def _convert_token_to_id(self, token): | |
""" Converts a token (str) in an id using the vocab. """ | |
return self.sp_tokenizer[token] | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.sp_tokenizer[index] | |
def save_vocabulary(self, save_directory, filename_prefix=None): | |
""" | |
Save the vocabulary and special tokens file to a directory. | |
Args: | |
save_directory (`str`): | |
The directory in which to save the vocabulary. | |
filename_prefix (`str`, *optional*): | |
An optional prefix to add to the named of the saved files. | |
Returns: | |
`Tuple(str)`: Paths to the files saved. | |
""" | |
if os.path.isdir(save_directory): | |
vocab_file = os.path.join( | |
save_directory, self.vocab_files_names["vocab_file"] | |
) | |
else: | |
vocab_file = save_directory | |
with open(self.vocab_file, 'rb') as fin: | |
proto_str = fin.read() | |
with open(vocab_file, "wb") as writer: | |
writer.write(proto_str) | |
return (vocab_file,) | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A BERT sequence has the following format: | |
- single sequence: `[CLS] X [SEP]` | |
- pair of sequences: `[CLS] A [SEP] B [SEP]` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is not None: | |
token_ids_0 += token_ids_1 | |
mask_ids = self.sp_tokenizer[self.mask_token] | |
gmask_ids = self.sp_tokenizer[self.gMASK_token] | |
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0: | |
token_ids_0 += [gmask_ids] | |
if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids: | |
token_ids_0 += [self.sp_tokenizer[self.eos_token]] | |
token_ids_0 += [self.sp_tokenizer[self.bos_token]] | |
return token_ids_0 | |