Spaces:
Running
Running
File size: 7,053 Bytes
2bd606a f1b4ae2 2bd606a 97354e0 2bd606a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
TODO:
1. add more language
2. check space count of bert
3. add token_impl
4.
"""
import os
import json
import numpy as np
import pandas as pd
from collections import Counter, defaultdict
from vocab import tokenizer_factory
from typing import Optional, Union, Literal
from utils.log_util import logger
from utils.text_util import contains_digit, get_space_count
from utils.lang_util import detect_language, language_ranges
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
def _to_unicode(text):
return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text)
def _get_coding_length(tokenizer, vocab, filter=None):
"""
oov character may be tokenized into more than one token.
"""
all_length = []
for word in vocab:
if len(word) > 1:
continue
if filter is not None and filter(word):
continue
try:
tokens = tokenizer.encode(word)
except Exception as e:
print(e)
all_length.append(len(tokens))
# if len(tokens.ids) > 1:
# if len(tokens) > 3:
# print(word, tokens)
dist_length = Counter(all_length)
mean_length = round(sum(all_length) / len(all_length), 2)
return dist_length, mean_length
cache = {}
def _dist(token_lens):
"""
:param token_lens:
:return: min,median,max of token_lens
"""
if not token_lens:
return "-"
return f"{min(token_lens)},{round(np.median(token_lens))},{max(token_lens)}"
def iter_vocab(
tokenizer_name: str,
from_cache: bool = True,
cache_dir: str = "stats",
) -> Union[pd.DataFrame, dict]:
"""
:param tokenizer_name:
:param from_cache:
:param cache_dir:
:return:
"""
tokenizer_config = tokenizer_factory.get_tokenizer_config(tokenizer_name)
cache_dir = os.path.join(CURRENT_DIR, cache_dir)
os.makedirs(cache_dir, exist_ok=True)
# load from cache
cache_path = os.path.join(cache_dir, "character_stats.json")
if not cache and os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f_tmp:
cache.update(json.load(f_tmp))
if from_cache and tokenizer_name in cache:
# logger.info(f"load {tokenizer_config.name_or_path} from cache")
return cache[tokenizer_name]
tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name)
tokens_by_lang = {lang[1]: [] for lang in language_ranges.keys()}
digit_tokens = []
space_tokens = []
byte_tokens = []
buffer = []
for token_id in range(tokenizer.vocab_size):
# for token_id in tokenizer.get_vocab():
# for token_id in range(len(tokenizer)):
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
tags = []
if token is None: # 有些词典有空的id(不连续)
continue
if isinstance(token, bytes):
token = token.decode("utf-8", errors="ignore")
if hasattr(tokenizer, "sp_model"): # 基于 sentencepiece 包
if tokenizer.sp_model.is_byte(token_id):
tags.append("is_byte")
byte_tokens.append(token)
language_tags = detect_language(decode_str)
for language in language_tags:
tokens_by_lang[language[1]].append(decode_str)
if contains_digit(decode_str):
tags.append("digit")
digit_tokens.append(decode_str)
space_count = get_space_count(decode_str)
if space_count > 0:
space_tokens.append(decode_str)
buffer.append(json.dumps(
{
"id": token_id,
"token": token,
"token_decode": decode_str,
"token_dumps": json.dumps(token),
"token_unicode": _to_unicode(token),
"token_len": len(decode_str),
},
ensure_ascii=False) + "\n")
result = {
"tokenizer": tokenizer_factory.get_name_with_hyperlink(tokenizer_name),
"organization": tokenizer_config.org,
# "impl": str(tokenizer.__class__),
# "vocab_size-": tokenizer.vocab_size, # vocab_size_without_added_token
"vocab_size": len(tokenizer),
# "中文汉字编码长度均值": mean_length, # 不用统计,因为字典包含中文字符多,一般就意味着 中文汉字编码长度短。
# "中文汉字编码长度分布": json.dumps(dist_length),
"num(digit)": len(digit_tokens),
"len(digit)": _dist([len(token) for token in digit_tokens]),
"num(space)": len(space_tokens),
"len(space)": _dist([len(token) for token in space_tokens]),
# "num(byte)": len(byte_tokens)
}
for lang, tokens in tokens_by_lang.items():
result[f"num({lang})"] = len(tokens)
result["len(" + lang + ")"] = _dist([len(token) for token in tokens])
out_path = os.path.join(cache_dir, f"iter_vocab/{tokenizer_name.replace('/', '_')}.vocab.jsonl")
with open(out_path, "w", encoding="utf-8") as f_out:
for line in buffer:
f_out.write(line)
len_before = len(cache)
cache[tokenizer_name] = result
len_after = len(cache)
logger.info(f"saving {tokenizer_name} to memory and file cache: {len_before}->{len_after}")
with open(cache_path, "w", encoding="utf-8") as f_out:
f_out.write(json.dumps(cache, ensure_ascii=False, indent=2))
return result
def to_dataframe(stats, columns):
table = []
for stat in stats.values():
filtered_stat = {}
for k, v in stat.items():
if not k.startswith("num") and not k.startswith("len"):
filtered_stat[k] = v
if any(column in k for column in columns):
k = k.replace("ja-kana", "kana")
filtered_stat[k] = v
table.append(filtered_stat)
df = pd.DataFrame(table)
return df
def get_character_table(
tokenizer_filter: Optional[str] = None,
columns: Optional[str] = None,
return_type: Optional[Literal["dict", "dataframe"]] = "dataframe"
) -> Union[pd.DataFrame, dict]:
"""
"""
logger.info(f"columns: {columns}, tokenizer_filter: {tokenizer_filter}")
stats = {}
if tokenizer_filter is not None:
tokenizer_names = [tokenizer_config.name_or_path for tokenizer_config in tokenizer_factory.all_tokenizer_configs
if tokenizer_filter.lower() in tokenizer_config.name_or_path.lower()]
else:
tokenizer_names = tokenizer_factory.all_tokenizer_names
for tokenizer_name in tokenizer_names:
stat = iter_vocab(tokenizer_name)
stats[tokenizer_name] = stat
if return_type == "dataframe":
stats = to_dataframe(stats, columns)
return stats
if __name__ == "__main__":
# aa = get_character_table(tokenizer_filter="baichuan")
df = get_character_table()
logger.info(f"\n{df.to_markdown(index=False)}")
|