Spaces:
Running
Running
File size: 3,360 Bytes
751936e d10ecd7 751936e 9495a4f 751936e d10ecd7 751936e d10ecd7 751936e d10ecd7 751936e 9495a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
"""
TODO: 繁体、简体
"""
import os
import json
from collections import Counter
from utils.text_util import is_chinese, has_chinese
from zhon.hanzi import punctuation as zh_punc
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if is_chinese(line.strip())]
def zh_iterator():
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
yield (chr(idx))
def get_coding_length(tokenizer, vocab, filter=None):
all_length = []
for word in vocab:
if len(word) > 1:
continue
if filter is not None and filter(word):
continue
tokens = tokenizer.encode(word)
all_length.append(len(tokens))
# if len(tokens.ids) > 1:
# if len(tokens) > 3:
# print(word, tokens)
dist_length = Counter(all_length)
mean_length = round(sum(all_length) / len(all_length), 2)
return dist_length, mean_length
def has_zh_char(text):
return any(ch in zh_punc for ch in text)
cache = {}
def iter_vocab(tokenizer, name="", from_cache=True):
if from_cache and name in cache:
return cache[name]
f_out = open(name + "_vocab.zh.jsonl", "w", encoding="utf-8")
zh_token_count = {"total": 0, "中文单字": 0, "中文多字": 0}
all_single_zh_tokens = set()
zh_symbol_count = 0
for idx in range(tokenizer.vocab_size):
decode_str = tokenizer.decode([idx])
if has_chinese(decode_str):
# bert词典有 ##开头的
# byteBPE词典有带空格的
decode_str = decode_str.strip().replace("#", "") # TODO, 按类型
zh_token_count["total"] += 1
if len(decode_str) > 1:
zh_token_count["中文多字"] += 1
f_out.write(json.dumps({"id": idx, "token": decode_str, "type": "中文多字"},
ensure_ascii=False) + "\n")
else:
all_single_zh_tokens.add(decode_str)
zh_token_count["中文单字"] += 1
f_out.write(json.dumps({"id": idx, "token": decode_str, "type": "中文单字"},
ensure_ascii=False) + "\n")
elif has_zh_char(decode_str):
zh_symbol_count += 1
f_out.write(json.dumps({"id": idx, "token": decode_str, "type": "中文标点"},
ensure_ascii=False) + "\n")
#
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_chinese(k))
# TODO: 繁体字,简体字
zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)
result = {
"name": name,
"impl": str(tokenizer.__class__),
"vocab_size": tokenizer.vocab_size,
"中文汉字数": zh_token_count,
"中文标点数": zh_symbol_count,
"中文汉字编码长度均值": mean_length,
"中文汉字编码长度分布": json.dumps(dist_length),
}
cache[name] = result
return result
if __name__ == "__main__":
# test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k))
# test_coding_length(zh_punc)
# test_coding_length(zh_iterator())
from vocab.gpt_35_turbo import tokenizer
iter_vocab(tokenizer)
|